Code: AE-06/AT-04/AC-04                                                     Subject: SIGNALS & SYSTEMS    

PART – I,  VOL – I

 

TYPICAL QUESTIONS & ANSWERS

 

OBJECTIVE TYPE QUESTIONS

 

Each Question carries 2 marks.

 

Choose the correct or best alternative in the following:

 

Q.1      The discrete-time signal x (n) = (-1)n is periodic with fundamental period

 

                  (A) 6                                                    (B)  4

                  (C) 2                                                    (D) 0

            

 Ans: C   Period = 2

 

Q.2      The frequency of a continuous time signal x (t) changes on transformation 

                  from x (t) to x (t), > 0 by a factor

                  (A) .                                                 (B) .

                  (C)  2.                                               (D) .

                                                             Transform

             Ans: A                            x(t)                         x(αt), α > 0

                                                    

                        α > 1        compression in t, expansion in f by α.

                        α < 1        expansion in t, compression in f by α.


   

Q.3     A useful property of the unit impulse is that

                  (A) .                             (B) .

                  (C) .                            (D) .

            Ans: C             Time-scaling property of δ(t):

                                    δ(at) = 1 δ(t), a > 0

                                                a

 

Q.4      The continuous time version of the unit impulse  is defined by the pair of   relations

                  (A)      (B) .

                  (C) .   (D) .

                       

            Ans: C    δ(t) = 0, t ≠ 0  ®  δ(t) ≠ 0 at origin

                               +∞

                            ∫ δ(t) dt = 1 ® Total area under the curve is unity.

                              -∞

                        [δ(t) is also called Dirac-delta function]

 

Q.5     Two sequences x(n) and x2 (n) are related by x2 (n) = x1 (- n). In the 

            z-  domain, their ROC’s are

 

                  (A) the same.                                     (B) reciprocal of each other.

                  (C) negative of each other.                (D) complements of each other.

.                                                 z

           Ans: B              x1(n)               X1(z), RoC Rx

                                                  z                                            Reciprocals

                                x2(n) = x1(-n)               X1(1/z), RoC 1/ Rx

 

Q.6    The Fourier transform of  the exponential signal is

 

                  (A) a constant.                                      (B) a rectangular gate.                                           

                   (C) an impulse.                                     (D) a series of impulses.

                  

          Ans:  C    Since the signal contains only a high frequency wo its FT must be an impulse at w = wo                                                                         

 

    Q.7                                  If the Laplace transform of  is , then the value of

                   (A)  cannot be determined.                  (B)  is zero.

                   (C)  is unity.                                         (D)  is infinity.

 

                                                 L

            Ans: B             f(t)                     ω

                                              s2 + ω2

 

  Lim      f(t)  =     Lim     s F(s)     [Final value theorem]

                         t         ∞                  s         0

 

                     =    Lim          sω           = 0

                                                           s          0       s2 + ω2                       

    

  

Q.8   The unit impulse response of a linear time invariant system is the unit step

             function .  For t > 0, the response of the system to an excitation

                       will be

(A)    *.                                             (B)  .

(C)   .                                      (D)  .

 

 

 Ans: B

 

    h(t) = u(t);   x(t) = e-at u(t), a > 0

                                                                   

         System response y(t) =

                                           =

     

                         =  1 (1 - e-at)

                                               a

   Q.9   The z-transform of the function  has the following region of convergence

 

(A)                                               (B) 

(C)                                             (D) 

                                                            0

       Ans:   C        x(n) =      ∑ δ(n-k)

                                                   k = -∞

                                  0

                      x(z)  =     ∑  z-k = …..+ z3 + z2 + z + 1    (Sum of infinite geometric series)

                                    k = -∞

 

      =    1     ,       ׀z׀ < 1

                            1 – z

 

Q.10    The auto-correlation function of a rectangular pulse of duration T is

                         

(A)    a rectangular pulse of duration T. 

(B)    a rectangular pulse of duration 2T.     

(C)    a triangular pulse of duration T.    

(D)    a triangular pulse of duration 2T.

                 

                  Ans: D

                                      T/2

        RXX (τ) =  1       ∫  x(τ) x(t + τ) dτ      triangular function  of duration 2T.

                               T    -T/2

 

 Q.11        The Fourier transform (FT) of a function x (t) is X (f).  The FT of   will be

                         

(A)     .                                  (B)  .

(C)  .                                      (D)  .

                                             

            Ans: B             (t) =  1    ∫  X(f) ejωt dω 

                                      2π  - ∞

 

                                           ∞       

          dx   = 1    ∫ jω X(f) ejωt dω 

                         dt       2π  - ∞  

                      \   dx  « j 2π f X(f)

                        dt                      

 

Q.12    The FT of a rectangular pulse existing between t =  to t = T / 2 is a

 

(A)     sinc squared function.                   (B)  sinc function.

(C)  sine squared function.                   (D)  sine function.

                                

 

Ans: B x(t) =    1,     -T ≤ t ≤ T

   2          2

0,     otherwise

 

 +∞                            +T/2                                +T/2

X(jω) =   ∫ x(t) e–jωt dt   =      ∫   e–jωt dt  = e–jωt

                                     –∞                             –T/2                   –jω   

                                                                                             –T/2

 


          = -  1   (e-jωT/2 - ejωT/2) =  2     ejωT/2 - e-jωT/2

                jω                              ω            2j

 

          =  2 sin ωT   =  sin(ωT/2)  .T

                                ω       2             ωT/2             

     

Hence X(jω) is expressed in terms of a sinc function.

 

Q.13       An analog signal has the spectrum shown in Fig. The minimum sampling 

 rate   needed to completely represent this signal is

 
                            

(A)     *.                                      

(B)     .

(C)  .                                       

(D)  .

 

             

 

               Ans: C    For a band pass signal, the minimum sampling rate is twice the  

                               bandwidth, which is 0.5kHz here.  

            

Q.14    A given system is characterized by the differential equation:

 

                    

                       The system is :

 

(A)     linear and unstable.                       (B)  linear and stable.

(C)  nonlinear and unstable.                  (D)  nonlinear and stable.

h(t)

 
 


       Ans:A             d2y(t)dy(t) – 2y(t) = x(t), x(t)            x(t)              y(t)

                               dt2                dt                                         system

                

The system is linear . Taking LT  with zero initial conditions, we get

s2Y(s) – sY(s) – 2Y(s) = X(s)

 

or, H(s) = Y(s)  =        1        =           1          

                 X(s)      s2 – s – 2       (s –2)(s + 1)             

 

Because of the pole at s = +2, the system is unstable.

 

Q.15    The system characterized by the equation  is 

                                    

                                                                    (A)  linear for any value of b.               (B)  linear if b > 0.

                                      (C)  linear if b < 0.               (D)  non-linear.

 

       Ans: D    The system is non-linear because x(t) = 0 does not lead to y (t) = 0, which       is a violation of the principle of homogeneity.

 

                                                                               Q.16    Inverse Fourier transform of  is

 

                   (A)   .                                     (B)  .

                   (C)  .                                        (D)  .

 

                                                   FT

              Ans: A                     x(t) = u(t)                  X(jω) =  π δ(ω)  +    1

                                                                                                 Jω

 

Duality property:  X(jt)                  2π x(-ω)

 

u(ω)               1 δ(t)  +   1

2                          πt

 Q.17    The impulse response of a system is .  The condition for the system to  

                   be BIBO stable is

 

                  (A)   a is real and positive.                     (B)  a is real and negative.

                  (C)  .                                          (D)  .

                                                           +∞                       +∞

              Ans: D          Sum  S =  ∑  ׀h(n)׀  =       ∑ ׀ an u(n) ׀

                                                              n = -∞                    n = -∞

                                                   +∞

                                              £     ∑  ׀a׀ n        (  u(n) = 1 for n ≥ 0 )

                                       n = 0

                                       £     1          if ׀a׀ < 1.

                                         1- ׀a׀

                                        

Q.18    If is the region of convergence of x (n) and  is the region of convergence of

      y(n), then the region of convergence of x (n) convoluted y (n) is                    

                   

                    (A)  .                                     (B)  .

                    (C)  .                                     (D)  .

                                                z

            Ans:C             x(n)               X(z),   RoC R1

                                     z

                        y(n)              Y(z),   RoC R2

                                               z

                        x(n) * y(n)               X(z).Y(z), RoC at least R∩ R2

 

 Q.19    The continuous time system described by  is                                           

               (A)  causal, linear and time varying.   

                       (B)  causal, non-linear and time varying.

                       (C)  non causal, non-linear and time-invariant.         

                (D)  non causal, linear and time-invariant.

 

                Ans: D

                        y(t) = x(t2)

                        y(t) depends on x(t2)  i.e., future values of input if t > 1.

                        *  System is anticipative or non-causal

a x1(t)  ®  y1(t) = a x1(t2)

b x2(t)  ®  y2(t) = b x2(t2)

                        *a x1(t)  +  b x2(t)  ®  y(t) = ax1(t2) +b x2(t2) = y1(t) + y2(t)

                      *  System is Linear

System is time varying. Check with x(t) = u(t) – u(t–1) ®  y(t) and

  x1(t) = x(t – 1) ®  y1(t) and find that y1(t) ¹ y (t –1).

 

Q.20     If G(f) represents the Fourier Transform of a signal g (t) which is real and odd     

       symmetric in time, then G (f) is

 

                    (A)  complex.                                     (B)  imaginary.

                    (C)  real.                                             (D)  real and non-negative.

 

                                                   FT

               Ans:B                g(t)            G(f)

 

g(t) real, odd symmetric in time

 

G*(jω) = - G(jω); G(jω) purely imaginary.

 

 

Q.21     For a random variable x having the PDF shown in the Fig., the mean and the  

             variance are, respectively,

 

 
                                                                                       

                      (A)  .                             

                             (B)  1 and .

                      (C)  1 and .                                

                      (D)  2 and .

                  

 

                                                             +∞

               Ans:B           Mean = μx(t) =  ∫ x fx(t) (x) dx

                                                            -∞

                 3

         =   ∫ x 1 dx =  1 x2   3   =   9 1   1 = 1

                                    -1     4          4  2   -1         2    2   4

 

                      +∞

Variance =   ∫ (x - μx)2 fx (x) dx

                                                         -∞

 

                          3

               =     ∫ (x - 1)2 1 d(x-1)

                        -1                 4

 

               =   1 (x - 1)3    3   =   1 [8 + 8] = 4

                                            4     3        -1       12                   3

 

 Q.22     If white noise is input to an RC integrator the ACF at the output is proportional to 

                      (A)  .                               (B)  .

                       (C)  .                             (D)  .

 

               Ans:   A

 


                  RN(τ) =  N0    exp - ׀ τ ׀

                                     4RC           RC

              

 Q.23     is

                           (A)  an energy signal.                  

                           (B)  a power signal.

                           (C)  neither an energy nor a power signal.                                                                

          (D)  an energy as well as a power signal.

                                                                                          

               Ans:  A        +∞                ∞                   ∞                               ∞                                                 

                   Energy = ∑ x2(n)  =  ∑  a2  =   ∑ (a2)    = 1+ 2  ∑ a2n

                                 n=-∞               n=-∞             n=-∞                          n=1

 

                =  finite since   ׀a׀ < 1   

      \This is an energy signal.                              

                  

     

Q.24           The spectrum of x (n) extends from , while that of h(n) extends    

                        from .  The spectrum of  extends    

                        from

     (A)   .                   (B)  .

     (C)   .                   (D) 

.

       Ans: D           Spectrum of y(n) is H( e). 

                              X( e) exists out the smaller of the two ranges.

 

Q.25     The signals  and  are both bandlimited to  and   

                            respectively.  The Nyquist sampling rate for the signal  

                           will be

 

                (A) .                               (B)  .

                (C)  .                                    (D)  .

 

                 Ans: C       

                                 Nyquist sampling rate = 2 x [highest frequency in ] = 2(ω1 + ω2)

 

Q.26     If a periodic function f(t) of period T satisfies , then in its Fourier

                      series expansion,

 

(A)the constant term will be zero.

(B)there will be no cosine terms.

(C)there will be no sine terms.             

(D)there will be no even harmonics.

 

             Ans:  A

                                    T                     T/2                  T                          T/2               T/2                                   

                  1    ∫ f(t) dt = 1    ∫ f(t) dt +   ∫f(t) dt    =  1     ∫  f(t) dt +  ∫ f(τ + T/2)dτ    = 0

                             T   0                 T   0                  T/2                   T    0                                0

     

 

Q.27           A band pass signal extends from 1 KHz to 2 KHz.  The minimum  sampling frequency needed to retain all information in the sampled signal is                                

 

(A)1 KHz.                                           (B)  2 KHz.

(C)  3 KHz.                                         (D)  4 KHz.

 

    Ans: B

 

          Minimum sampling frequency = 2(Bandwidth) = 2 kHz

 

Q.28       The region of convergence of the z-transform of the signal

                            

(A) is .                                       (B)  is.

(C)  is .                               (D)  does not exist.

               Ans:                 

 

                   2nu(n)                    1     ,   ׀z׀ > 2

                              1 –2 z -1

                        

            3n u(-n-1)             1       ,  ׀z׀ < 3

                                      1 – 3z -1

 

         * ROC  is 2 < ׀z׀ < 3.

 

Q.29   The number of possible regions of convergence of the function      is

                            

(A)   1.                                                 (B)  2.

(C)  3.                                                 (D)  4.

 

          Ans: C

 

                  Possible ROC’s are  ׀z׀ > e-2 , ׀z׀ < 2 and  e-2 < ׀z׀ < 2

                      

 Q.30     The Laplace transform of u(t) is A(s) and the Fourier transform of u(t) is .        

                                 Then

      (A).                 (B)  .

      (C)  .     (D)  .

                                           L

          Ans: B    u(t)             A(s) = 1

                                                              s

                                F.T

                        u(t)             B(jω) = 1   + π δ(ω)

                    jω

 

                     A(s) = 1  but B(jω)  ≠   1      

                                   s                        jω

 

PART – II,  VOL – I 

NUMERICALS

 

 Q.1.  Determine whether the system having input x (n) and output y (n) and described by relationship :           

    is  (i) memoryless, (ii) stable, (iii)causal (iv) linear and (v) time invariant.

                             n

             y(n) =      ∑  x(k + 2)

                              k = -∞

(i) Not memoryless -  as y(n) depends on past values of input from x(-∞) to x(n-1) (assuming)n > 0)

(ii)  Unstable- since if ׀x (n)׀ £ M, then  ׀y(n)׀ goes to    for any n. 

(iii) Non-causal - as y(n) depends on  x(n+1) as well as x(n+2).

(iv) Linear -    * the principle of superposition applies (due to ∑ operation)

      (v) Time – invariant  - * a time-shift in input results in corresponding time-          shift in output.

 

       

 Q.2.     Determine whether the signal x (t) described by

          x (t) = exp [- at] u (t), a > 0 is a power signal or energy signal or neither.

 

 Ans:

 

            x(t) = e-at u(t), a > 0

x(t) is a non-periodic signal.

                 + ∞                     ∞                                 ∞

Energy E = ∫  x2(t) dt = ∫  e-2at dt =   e-2at                  =    1     (finite, positive)         

                - ∞                    0                      -2a                    2a

                                                                   0

The energy is finite and deterministic.

            *  x(t) is an energy signal.

 

 

 Q.3.           Determine the even and odd parts of the signal x (t) given by                                             

 

                                                                                                                  

       

Ans:

Assumption : α > 0, A > 0, -∞ < t < ∞ 

 

Even part    xe(t)   =       x(t) + x(-t)

                                                        2                                         

Odd part     xo(t)   =      x(t) - x(-t)

                                                        2

                                          

 

 

                                                      x(t)

                                                     

                                                        A          Ae-αt

 


                                      t

                                                          0                                   

                                                   x(-t)

                                                                    

                                         Ae+αt            A

                                                

                                                                                           t

                                                          0                                   

                                                   xe(t)

                                                               A/2

 

                                                             0                            t

                                                    xo(t)  

                                                     A/2

                                                 

                                                                                           t

                                                          0

                                                             -A/2

                                                             

 

Q.4. Use one sided Laplace transform to determine the output y (t) of a system described by  where y = 3 and                                                                                     

Ans:

     

            d2y  + 3 dy + 2 y(t) = 0,   y(0-) = 3,   dy           = 1

            dt2         dt                                           dt  t = 0-   

               

       s2 Y(s) – s y(0) – dy           + 3 [s Y(s) – y(0)] + 2 Y(s) = 0

                             dt  t = 0  

                                                         

 

(s2 + 3s + 2) Y(s)  =  sy(0) + dy           + 3 y(0)

                                                          dt   t = 0

 

(s2 + 3s + 2) Y(s)  =  3s + 1 + 9 = 3s + 10

 

                    Y(s)  =    3s + 10      =      3s + 10     

                                             s2 + 3s + 2       (s + 1)(s + 2)

                                                   

                                          =   A      +     B      

                                 s + 1        s + 2

 

 


A =  3s + 10            =  7 ;      B =   3s + 10              = -4

                     s + 2     s = -1                          s + 1     s = -2   

 

*  Y(s) =     7     -      4

                            s + 1                 s + 2

 

*  y(t) = L-1 [Y(s)] = 7e-t – 4e-2t  =  e-t( 7 - 4e-t)

 

*  The output of the system is y(t) = e-t( 7 - 4e-t) u(t)

 

Q. 5.  Obtain two different realizations of the system given by

         y (n) - (a+b) y (n – 1) + aby (n – 2) = x (n).Also obtain its transfer function.                               

 

Ans:

 

         y(n) – (a + b) y(n-1) + ab y(n-2) = x(n)

 

*  Y(z) – (a+b) z-1 Y(z) + ab z-2 Y(z) = X(z)

 

Transfer function H(z) = Y(z)  =                 1

                                                     X(z)      1 – (a+b) z-1 + ab z-2

 

y(n) = x(n) + (a + b) y(n-1) - ab y(n-2)

 

Direct Form I/II realization                   Alternative Realisation                                                                                            

    

 

 

 

 

 

Q. 6.      An LTI system has an impulse response

                  h (t) = exp [ -at] u (t);  when it is excited by an input signal x (t), its output   is y (t) = [exp (- bt) -exp (- ct)] u (t) Determine its input x (t).                                                                                               

Ans:    

 

             h(t) = e-at u(t) for input x(t)

Output y(t) = (e-bt - e-ct ) u(t)

                       L                            L                            L

            h(t)              H(s), y(t)              Y(s), x(t)                 X(s)

 

H(s) =      1     ;  Y(s) =      1      –     1      =   s + c – s – b  =         c – b

             s + a                   s + b       s + c         (s + b)(s + c)      (s + b)(s + c)

 

 

 

As  H(s) =  Y(s)   ,  X(s) = Y(s)

                   X(s)                 H(s)

 

* X(s) =  (c - b)(s + a)  =            A     +     B

                                   (s + b)(s + c)              s + b       s + c

 

A =   (c - b)(s + a)             =   (c – b)(-b + a)  = a - b 

             (s + c)        s = -b           (-b + c)

 

B =    (c - b)(s + a)            =   (c – b)(-c + a)  = c - a

               (s + b)      s= -c           (-c + b)

 

* X(s) =  a – b    +     c - a

                s + b           s + c

 

x(t) = (a – b) e-bt + (c – a) e-ct

 

* The input x(t) = [(a – b) e-bt + (c – a) e-ct] u(t)

       

 

Q.7.   Write an expression for the waveform  shown in Fig. using only unit step function 

          and powers of t.                                                                                                             

  

Ans:

 

 
 

 

 

 

 

 

 

 

 

 


 

 

 

 

* f(t) = E [ t u(t) – 2(t – T) u(t – T) + 2(t – 3T) u(t – 3T) – (t – 4T) u(t – 4T)]

            T

 

Q.8.    For f(t) of Q7, find and sketch  (prime denotes differentiation with respect to t).       

 

Ans:

       

          f(t) = E [ t u(t) – 2(t – T) u(t – T) + 2(t – 3T) u(t – 3T) – (t – 4T) u(t – 4T)]

                   T      

 

 

         f ΄(t)                                                               

                                                                                          

       E/T                                                          

 

                                                                                                          

                0      T     2T     3T    4T            t

 

     –E/T

 

 

            *  f ΄(t) = E [u(t) – 2 u(t - T) + 2 u(t – 3T) –u(t – 4T)]

                            T

Q.9.     Define a unit impulse function .                                                                              

 

 Ans:

.           Unit impulse function δ(t) is defined as:

                                                                                                             

 

δ(t) = 0, t ≠ 0

0+

∫ δ(t) dt = 1

              0–

                            

It can be viewed as the limit of a rectangular pulse p(t)of duration a and height 1/a when

a       0, as shown below.

 

Q.10.    Sketch the function  and show that            

            .

Ans:

 

             g(t)                                   As ε        0,   duration           0,   amplitude        ∞

               3/ε                                                               ε

                                                         ∫ g(t) dt        1

                                                                    0

                   0         ε              t

 

Q.11.    Show that if the FT of x (t) is , then the FT of  is .                   

Ans:

          FT

         x(t)               X(jω)

 

            FT

Let x  t                  X1(jω) , then

    a

               +∞

X1(jω) =  ∫  x    t    e-jωt dt          Let t = α      *  dt = a dα

              - ∞         a                              a

           +∞   

   =      ∫ x(α) e-jωaα a dα if a> 0

            -∞

                +∞

          -  ∫  x(α) e-jωaα  a dα if a < 0

                 -∞                       +∞

      Hence X1(jω) = ׀a׀  ∫  x(α) e-jωaα  dα  = ׀a׀ X (jωa)

                                          -∞

 

Q.12.          Solve, by using Laplace transforms, the following set of simultaneous differential equations for x (t).

 

Ans:

                  

 

                   The initial conditions are : .                                                       

 

             2 x΄(t) + 4 x(t) + y΄(t) + 7 y(t) = 5 u(t)

 

   x΄(t) +    x(t) + y΄(t) + 3 y(t) = 5 δ(t)

                     L                         L                         L                  L

x(t)           X(s), x΄(t)          s X(s), δ(t)            1,  u(t)           1

                                                                                           s

(Given zero initial conditions)

* 2 sX(s) + 4 X(s) + sY(s) + 7 Y(s) =  5

                                                                          s

      sX(s) +   X(s)  + sY(s) + 3 Y(s) =  5

 

 (2s + 4) X(s) + (s+7) Y(s) = 5

                                                           s

  (s + 1) X(s) + (s+3) Y(s) = 5

                     X(s) =          5        s+7            

                                          S        3

                                          5        s+3              

                                       2s+4        s+7

                                        s+1         s+3

 

 

Or,    X(s) =  -          5s + 35 – 5 – 15/s

                                    2s2 + 6s + 4s + 12 - s2 – 8s – 7

        

       =  -    5s2 + 30s –15       =   - 5     s2 + 6s – 3     = A   +    Bs+ C

                  s(s2 + 2s + 5)              s      s2 + 2s + 5         s       s2+ 2s +5

 

Then A (s2+ 2s +5) + B s2 +Cs = -5(s2 + 6s – 3) 

 

\  A +B = -5

   2A + C = -30

  5A =15

 

 Thus A = 3, B = -8, C = -36  and we can write

               

X(s)   =  3  – 8      s +1         – 14          2

                          s         (s + 1)2 + 22          (s + 1)2 + 22

            * x(t) = (3 – 8 e-t cos 2t – 14 e-t sin 2t) u(t)

 

Q.13.    Find the Laplace transform of .                                                               

Ans:

                                L                                        

            sin (ω0t)                    ω0

                              s2 + ω02

                         L

Using   t f(t)                -  d  [F(s)],

                                      ds

 


L [ t sin (ω0t) u(t) ] =   -  d          ω0

                                       ds      s2 + ω02

 


=        0 - ω0(2s)        =          2ω0s       

                      (s2 + ω02)2                 (s2 + ω02)2

 

 


Q.14.    Find the inverse Laplace transform of .                                                           

Ans:

 

F(s) =      s-2     =   A    +    B     +      C      +       D

                         s(s+1)3         s         s+1         (s+1)2                (s+1)3

 

A =      s-2             =  -2                   A(s+1)3 + Bs(s+1)2 + Cs(s+1) + Ds = s-2

Oval:  B = 2                      (s+1)3   s=0

                                                                     s3 : A+B = 0

D =     s-2              =  3                    

Oval:  C = 2                         s     s = -1                            s2 : 3A + 2B + C = 0

Oval:  A = –2 Oval:  D = 3
 

 

 

 


F(s) =    -2    +     2      +       2      +       3

               s          s+1          (s+1)2               (s+1)3

*  f(t) = -2 + 2 e-t + 2 t e-t + 3 t2 e-t

                                            2

* f(t) =  [-2 + e-t ( 3 t2 + 2t + 2 ) ] u(t)

                             2

 

Q.15.          Show that the difference equation  represents an all-pass transfer function.  What is (are) the condition(s) on  for the system to be stable?                         

Ans:

 

                  y(n) – α y(n-1) = - α x(n) + x(n-1)

 

      Y(z) – α z-1 Y(z) = - α X(z) + z-1 X(z)

     

            (1-α z-1) Y(z) = (-α + z-1) X(z)

 

 

H(z) = Y(z)   =  -α + z-1  =  1- α z

                  X(z)        1- α z-1       z- α

 

Zero : z = 1          As poles and zeros have reciprocal values, the transfer function

                              α           represents an all pass filter system.

 

Pole :  z =  α

 

Condition for stability of the system :

 

For stability, the pole at z = α must be inside the unit circle, i.e. ׀α׀ < 1.

 

Q.16.   Give a recursive realization of the transfer function                

 

Ans:

 

 H(z) = 1 + z-1 + z-2 + z-3  =   1 – z –4          Geometric series of 4 terms

                                                         1 – z –1     First term = 1, Common ratio = z –1

 

As H(z) = Y(z)  , we can write

                 X(z)

*  (1 – z –1) Y(z) =  (1 – z –4) X(z)  or Y(z)  =    X(z)    (1 – z –4)  = W (z)(1 – z –4)                                                                                             

                                                                        (1 – z –1)

 

The realization of the system is shown below.

 

 

 

Q.17  Determine the z-transform of  and  and indicate   their regions of convergence.

 

Ans:

       

         x1(n) = αn u(n)            and             x2(n) = -αn u(-n-1)

 

X1(z) =    1      RoC ׀αz-1׀ < 1 i.e., ׀z׀ > α

            1-αz-1

 

                   -1

X2(z) =    ∑ - αn z-n

            n=-∞

                     ∞

         =  -  ∑ α-n zn   =  -( α-1z + α-2z2 + α-3z3  + ………)

              n=1

 

           = - α-1z ( 1 + α-1z + α-2z2 + ……..)

 

         =      - α-1z        =    z      =      1       ;      RoC    ׀α -1 z׀ < 1 i.e., ׀z׀ < ׀α׀

                             1- α-1z           z-α        1 - α z-1

 

 

Q. 18.    Determine the sequence  whose z-transform is .         

 

Ans:

 

.             H(z) =                1                  ,     ׀r׀ < 1

                1-2r cosθ z -1 + r2 z -2

 

                     =               1                               ,     ׀r׀ < 1

                (1-r e z-1) (1-r e - z -1)

 

                     =            A        +         B             ,   ׀r׀ < 1

                (1-r e z-1)     (1-r e -z -1)

 

   

 

where A=                  1                           =        1     

                (1-r e–jθ z-1)     r e z-1 =1                  1- e -j2θ

 

 


              B =                  1                           =        1                                          

                (1-r e z-1)     r e-jθ z-1 =1                  1- ej2θ

 

\ h(n) =         1        ( r e )n    +        1      ( r e-jθ )n   

                                1- e-2jθ                                      1- e2jθ                         

      \h(n) = rn u(n)

        

              = rn e j(n + 1)θ    -  e - j(n + 1)θ     u (n)

                              e- e -jθ         

 

                =     rn   sin(n+1) θ   u (n)

                           sinθ

Q.19.    Let   the Z- transform of x(n) be X(z).Show that the z-transform of x (-n) is .

           Ans:

                                z

                    x(n)              X(z)        Let y(n)  =  x(-n)

                                 ∞                           ∞                         ∞

Then  Y(z) =      ∑ x(-n)z-n =     ∑  x(r) z+r   =  ∑  x(r) (z-1 ) -1   =  X (z-1 )

                                 n = -∞                     r = -∞                    r = -∞   

 

 

Q.20.   Find the energy content in the signal .

Ans:

 

            x(n) = e-0.1nsin    2πn          

                                        4

                                                          +∞                       +∞                                        2

Energy content  E  =    ∑  ׀x2(n)׀  =    ∑  e-0.2 n    sin    2πn

                                      n = - ∞                 n = - ∞                       4

 

                                      +∞                                       

                E  =    ∑  e-0.2n     sin2  nπ

                                      n = - ∞                   2

                                               +∞                                       

                E  =    ∑  e-0.2n     1-cosnπ

                                      n = - ∞                 2

                                                  +∞                                       

                    =  1  ∑  e-0.2n    [1 – (-1) n]

                                     2   n = - ∞                 

 

 

Now 1 – (-1)=    2 for n odd

                              0 for n even         

                                                              ∞                             ∞

   Also  Let n = 2r +1 ; then       E  =    ∑  e-.2(2r +1 )  =     ∑  e-.4r     e- .2  

                                                                        r = - ∞                   r = - ∞                                                                                                                                                                                                                                                                                                                                                         

                  ∞                 ∞

   = e-0.2   ∑  e-.4r   +   ∑  e.4r         The second term in brackets goes to infinity . Hence            

                                               r = 0             r = 1              E is infinite.

 

                       Q.21.                                              Sketch the odd part of the signal shown in Fig.      

            

     Ans:

 
 

 

 

 

 

 

 

 

 

 


      Odd part    xo(t)   =  x(t) – x(-t)     

                                      2

 

 

 

 

 

 

                                                                           

 

 

 

 

 

 

 

 

     Q.22.  A linear system H has an input-output pair as shown in Fig. Determine whether the

                system is causal and time-invariant.                                                                            

 
    

     Ans:

       

 

 

 

 

 

 

 

 


        System is non-causal * the output y(t) exists at t = 0 when input x(t) starts only at   

               t = +1.

        System is time-varying * the expression for y(t) = [ u (t) – u (t-1)(t –1) + u (t –3) (t – 3) – u (t-3) ] shows that the system H has time varying parameters.

 

Q.23. Determine whether the system characterized by the differential equation  is stable or not.

      Ans:

 

         d2y(t)  - dy(t)  +2y(t0 = x(t)

dt2            dt 

                  L                         L

y(t)          Y(s);   x(t)           X(s); Zero initial conditions

         s2 Y(s) – sY(s) + 2Y(s) = X(s)

       System transfer function  Y(s) =   1              whose poles are in the right half plane.        

                                                 X(s)    s2 – s + 2

      Hence  the system is not stable.         

Q.24   Determine whether the system is invertible.

        Ans:

                        t

            y(t) = ∫ x(τ) dτ

                        - ∞

 

Condition for invertibility:    H-1 H  =  I (Identity operator)

 

            H           Integration

            H-1        Differentiation

 

x(t)        y(t) = H{x(t)}

 

H-1{y(t)} = H-1 H{x(t)} = x(t)

 

*  The system is invertible.

 

Q.25  Find the impulse response of a system characterized by the differential equation    

                 .

Ans:

 

            y΄(t) + a y(t) = x(t)

         L                         L                         L

x(t)           X(s), y(t)            Y(s), h(t)              H(s)

 

sY(s) + aY(s) = X(s), assuming zero initial conditions

 

H(s) = Y(s)  =     1 

                        X(s)      s + a

 

* The impulse response of the system is h(t) = e-at u(t)

 

            

Q.26. Compute the Laplace transform of the signal .

 

Ans:

 

        y(t) = (1 + 0.5 sint) sin1000t

      = sin 1000t + 0.5 sint sin 1000t

 


      = sin 1000t + 0.5     cos 999t – cos 1001t

                                                                 2

      = sin 1000t + 0.25 cos 999t – 0.25 cos 1001t

 

* Y(s) =    1000      + 0.25      s          - 0.25       s 

                          s2 + 10002                   s2 + 9992             s2 + 10012

                 

 

           Q.27.  Determine Fourier Transform of the signal  and      

                         determine  the value of .

 

             Ans:                                                        

 

            We assume f(t) = e-αt cos(ωt + θ) u (t) because otherwise FT does not exist

                        FT              +∞

            f(t)               F(ω) =   ∫  e-αt ej(ωt + θ) + e-j(ωt + θ) e-jωt dt

                                                      0                                2

                                 +∞

*  F(ω) =  1    ∫ [e-αt e-jωt ejωt + jθ + e-αt e-jωt e-jωt – jθ] dt

2        0

   +∞

            =  1   ∫ [e-αt + jθ + e– jθ e–(α + 2jω)t] dt

                                  2   0

                                                     

                                                      

*  F(ω)  = 1   (α + 2jω) e+  α e– jθ

                             2      α (α + 2jω) 

 

       =          1   2α cos θ+ 2jωe

                               2      α (α + 2jω) 

 

       =               α cos θ + j ω cos θ – j ω sin θ

                                     α (α + 2jω) 

 

 

                      

    F(ω) 2    =   α2 cos 2θ+ ω2 – 2αω sin θ cos θ

                                    

                                      α22 + 4ω2

                      

                      

                  ω 2 + α2 cos2θ – αω sin2 θ

                 =                    

                                           α22 + 4ω2

                    

              Q.28.   Determine the impulse response h(t) and sketch the magnitude and phase

                response of the system described by the transfer function

      .

 Ans:

            H(s) =       s2 + ω02

                       s2 + ω0 s + ω02

                              Q

H(jω) =         (jω)2 + ω02           =           ω02 - ω2

              (jω)2 + ω0 (jω) + ω02          ω02 - ω2 + j ω ω0

                                     Q                                                  Q

 

*      H(jω)   =               ω02 - ω2

                           [(ω02 - ω2)2 + ω2   ω 0    2]  1/ 2

                                                       Q

 

Arg H(jω) = - tan-1      ω  ω0

                                                    Q

                                   ω02 - ω2

 

Ω

H(jω)

Arg H(jω)

   0

1

0

1

0

ω0-

0

- π/2   

ω0+

0

+ π/2

 

                                            H(jω)                              

                                                                     Magnitude

                                                     1                 

 

 

                                                      0               ω0                               ω

                                      arg H(jω)                              

                                                                      Phase

                                             + π/2      

 


                                                      0              ω0                               ω

                      

                                             - π/2                               

 

 

             Q.29.  Using the convolution sum, determine the output of the digital system shown in

                        Fig..

 

Ans:

                 Assume that the input sequence is and that the system is    

                 initially at rest.                               

                                                                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


x(n) =  { 3, -1, 3 }, system at rest initially (zero initial conditions)          

 

            

                 n = 0

 

     x(n)   = 3δ(n) - δ(n-1) + 3δ(n-2)

 

X(z) = 3 - z-1 + 3z-2

 

Digital system: y(n) = x(n) + 1 y(n-1)

                                               2

* Y(z) =            X(z)         =        3 - z-1 + 3z-2           = -10 -6   z-1   +  13                

               1 – 1 z-1               1 – 1 z-1                                      1 – 1 z-1               

                     2                          2                                               2   

                  by partial  fraction expansion.                                             

 


Hence y(n)= -10 d (n) – 6 d (n-1) +

 

Q.30.    Find the z-transform of the digital signal obtained by sampling the analog signal  at intervals of 0.1 sec.

Ans:

                           x(t) = e-4t sin 4t u(t),        T = 0.1 s

 

x(n) = x(t       nT) = x(0.1n) = ( e-0.4 )n sin(0.4n)

 z                                                                  α = e-0.4 = 0.6703, 1 = 1.4918

x(n)             X(z)                                                                                   α

                                  z

x(n) = sin Ωn u(n)                      z sin Ω                   Ω = 0.4 rad = 22.92˚

                                                      z2 –2z cos Ω + 1

                                                                              sin Ω = 0.3894; cos Ω = 0.9211

 

               z

αn x(n)            X (z/α)

 

*   X(z) =                 1.4918z (0.3894)

                              (1.4918)2 z2 – 2(1.4918)z(0.9211) + 1

 

     X(z) =                0.5809z    

                              2.2255 z2 – 2.7482z + 1                                                                                        

            

Q.31. An LTI system is given by the difference equation .

                     i.   Determine the unit impulse response.

                   ii.   Determine the response of the system to the input (3, -1, 3).                                         

                                                                                                                                

Ans:

         y(n) + 2y(n-1) + y(n-2) = x(n)

 

Y(z) + 2z-1 Y(z) + z-2 Y(z) = X(z)

 

(1 + 2z-1 + z-2)Y(z) = X(z)

     

      (i). H(z) = Y(z)  =          1                 =      1           ( Binomial expansion)

                        X(z)       1 + 2z-1 + z-2                  (1 + z-1)2

 

                     =  1- 2z-1 + 3 z-2 - 4 z-3 + 5 z-4 - 6 z-5 + 7 z-6 - …….

 

*  h(n) = δ(n) - 2δ(n-1) + 3δ(n-2) -…..

 

 

            = {1,-2,3,-4,5,-6,7,….}   is the impulse response.

 

                     n=0

 

 

(ii). x(n) = { 3,-1,3 }

 

            n=0

 

        = 3δ(n) - δ(n-1) + 3δ(n-2)

 

X(z) = 3 - z-1 + 3z-2

*  Y(z)  =   X(z).H(z) = 3 - z-1 + 3z-2   =  3(1 + 2z-1 + z-2) – 7z-1

                                      1 + 2z-1 + z-2                          1 + 2z-1 + z-2

 

             =    3  –  7      z-1    

                             (1 + z-1)2

 

*  y(n) = 3δ(n) + 7nu(n) is the required response of the system.

 

 

 

Q.32.    The signal x(t) shown below in Fig. is applied to the input of an

                   (i)   ideal differentiator.                         (ii)  ideal integrator.

 
                   Sketch the responses.                                                                                            

Ans:

 

 

      x(t) = t u(t) – 3t u(t-1) + 2t u(t-1.5)

 

           

                                                     

      x(t)

                                                       (i) 0 < t < 1

   1                                                                   t

                                                                        y(t) =      ∫ t dt  = t2   y(1)=   0.5

                                                                                     0              2                 

                                     t

    0          1      1.5                          (ii)  1 < t < 1.5

            dx(t )                                                                        t

             dt                                                       y(t) = y(1) + ∫(3-2t)dt

1                                                                                                                                              1         

                                                                                                      t

                                                              = 0.5 + (3t – t2)    = 0.5 + 3t – t2 – 3 + 1

                                                                                                       1

                   0                                t                       = 3t – t2 – 1.5    

                  

                                                                    For t =1: y(1) = 3 – 1 – 1.5 = 0.5

 

                                                                  (iii)  t ≥ 1.5 : y(1.5) = 4.5 – 2.25 –1.5 = 0.75

                 -2

                                                                                      

         ∫x(t)dt                                                

                                                                                                                

               0.5                                                       

                                                   

                  0           1      1.5     t                                                                                                                                    

 

 

   Q.33. Sketch the even and odd parts of

 

                   (i)   a unit impulse function                    (ii)  a unit step function

                   (iii) a unit ramp function.                                                                                         

 

   Ans:

 

               Even part    xe(t)   =    x(t) + x(-t)

                                                        2

Odd part     xo(t)   =    x(t) - x(-t)

                                                         2

 

                        (i)unit impulse           (ii)unit step               (iii)unit ramp

            function                     function                     function

 

Q.34.    Sketch the function .

Ans:

 

                           f(t)                                                                                      

                               1                                             f(t) =  1     0 < t < T, 2 T < t 3 T

                                                                                              -1  T< t < 2T, 3T < t <4T, ……

 

          …..       -T     0    T               …..           t                             

 


                             -1

 

Q.35.   Under what conditions, will the system characterized bybe

            linear, time-invariant, causal, stable and memory    less?

Ans:

 

            y(n) is : linear and time invariant for all k

             causal if n0 not less than 0.

             stable if a > 0

             memoryless if k = 0 only

    

 

Q.36. Let E denote the energy of the signal x (t).  What is the energy of the signal

          x (2t)?                                                                                                                         

Ans:

 

         Given that

      E = dt

      To find E΄ =   

       Let 2t =r then E΄ = 

 

Q.37.  x(n), h(n) and y(n) are, respectively, the input signal, unit impulse response and  

           output signal of a linear, time-invariant, causal system and it is given that 

            where * denotes convolution.  Find the possible sets

           of values of  and .

Ans:

 

.         y(n-2)   =   x(n-n1) * h(n-n2)

     *  z-2 Y(z) = z-n1 X(z) . z-n2 H(z)

        z-2 H(z) X (z) = z-(n1+ n2) X(z) H(z)

              *   n1+n2 = 2

          Also, n1, n2 ≥ 0, as the system is causal. So, the possible sets of values for n1 and n2 are:

          {n1, n2} = {(0,2),(1,1),(2,0)}

 

 

 

 Q.38.  Let h(n) be the impulse response of the LTI causal system described by the difference

            equation  and let .  Find .                 

Ans:

  

              y(n) = a y(n-1) + x(n)             and       h(n) * h1(n) = δ(n)

Y(z) = az-1 Y(z) + X(z)          and       H(z) H1(z) =1

H(z) = Y(z) =     1                 and       H1(z) =      1

                           X(z)     1-az-1                                          H(z)

            

          *   H1(z)  =   1-az-1         or         h1(n) = δ(n) – a δ(n-1)            

 

 

Q.39. Determine the Fourier series expansion of the waveform f (t) shown below in terms of

           sines and cosines.  Sketch the magnitude and phase spectra.                                                      

 
Ans:

 

 

 

 

 

 

 

 

 

            Define g(t) = f(t) +1. Then  the plot of g(t) is as shown  below and,

 


                                               

 

                                                              

                                                                           w = 2p/2p = 1

                                                                           because T =2p

 

 

 

 

 


g(t) =      0   - π< t < - π/2

         2    - π/2< t < π/2

         0      π/2< t < π

                      

 

                            ¥

Let g(t) = a0 + S (an cos nt + bn sin nt)

                      n=1

Then a0 =  average value of f(t) =1

an =   =  π/2     = [2 /(n π)] . 2sin n π/2

                                                 -π/2

= [4 /(n π)] . sin n π/2

     =      0                if n= 2,4,6 ……

      4 /(n π)        if n= 1,5,9 ……

     - 4 /(n π)       if n= 3,7,11……     

                     Also, bn    =   =  π/2   = [4 /(n π)] [ cos n π /2  - cos n π /2]   = 0

                                                       –π/2

                     

 

 

                Thus, we have f(t) = -1 + g(t)

 

                 =

               =  (4/)[ cost – (cos3t)/3 + (cos5t)/5   …..]

 

           spectra :

 

 

                                         (Magnitude) X π/4

                                     1

                                                                                                                                                                                                                       

                                                                              1/3     

                                                                      1/5

                                                                                                                                                   1/7

                    -7   -6  -5   -4   -3  -2   -1                               0     1    2   3    4    5    6    7                      a

 


                             Phase

 

                      -7                   -3                                  3                      7                

                                                                                          

                                   

                                  -π

                  

Q.40.  Show that if the Fourier Transform (FT) of x (t) is , then

           FT .

Ans:

FT

x(t)                  X(ω)

                                  +∞

i.e., x(t) =    1       ∫  X(ω) ejωt

                                  2π   -∞

                                                     +∞

*   d  [x(t)] =  1      ∫ X(ω) jω ejωt

                    dt              2π  -∞

              

               *     d    [x(t)]        FT          jω X(jω)

                      dt

        

Q.41.   Show, by any method, that FT .

Ans:

                                        +∞

               x(t) =     1     ∫  X(jω) ejωt

                            2π  -∞

                    

                      +∞

x(t) =  1       ∫  π δ(ω) ejωt dω = 1    

                         2π   -∞                                   2

 

*    1        FT      π δ(ω)

                     2

 

 

Q.42  Find the unit impulse response, h(t), of the system characterized by the relationship :

           .

Ans:

 

                             t                                                     

               h(t) =   ∫ d (τ) dτ =          1, t ≥ 0

                             -∞                                 0, otherwise

 

                      = u(t)

 

 

Q.43.  Determine the frequency response of u(t).

 

Ans:

 

As shown in the figure, u(t) = (1/2) + x(t)

where x(t)  =                0.5,          t >0

                                  –0.5,          t <0

 

 \dx/dt = d (t) and  FT[d (t)] = jwX(w)

 \X(w) = 1/(jw).   Also FT[1/2] = pd (w)

 Therefore FT [u(t)] = pd(w) + 1(jw).

 

 

   Q.44.  Let  denote the Fourier Transform of the signal x (n) shown below .

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

                   Without explicitly finding out , find the following :-

                   (i)    X (1)                                            (ii)  

                   (iii)  X(-1)                                            (iv)  the sequence y(n) whose Fourier

                                                                              Transform is the real part of .

                   (v)   .                                                                                         

   Ans:   

                                   

               X(e) =       ∑ x(n) e-jωn

                                     n = -∞

                                                       +∞

(i) X(1) = X(ej0) =  ∑ x(n) = –1 + 1 + 2 + 1 + 1 + 2 + 1 –1 = 6

                                                       -∞

                                            

 

                                             +π                                  π

(ii) x(n) =  1     ∫  X(e) ejωn dω ;  ∫ X(e) dω = 2π x(0) = 4π

                                         -π                                 -π

                                                                +∞

(iii) X(-1) = X(e) =       ∑ x(n) (-1)n = 1+ 0-1+2-1+0-1+2-1+0+1 =2

                                                           n = -∞

 

(iv) Real part X(e)           xe(n) = x(n) + x(-n)

                                                                               2

               y(n) = xe(n) = 0,      n < -7, n > 7

               y(7) = 1 x(7) = -1 = y(-7)

                          2             2

               y(6) = 1 x(6) = 0 = y(-6)

                          2

               y(5) = 1 x(5) = 1 = y(-5)

                          2            2

               y(4) = 1 x(4) = 2 = y(-4)

                          2

               y(3) = 1[x(3) + x(-3)] = 0 = y(-3)

                          2

               y(2) = 1[x(2) + x(-2)] = 0 = y(-2)

 

                                         2

               y(1) = 1[y(1) + y(-1)] = 1 = y(-1)

                                         2

               y(0) = 1[ y(0) + y(0)] = 2

                                         2

 

(v) Parseval’s theorem:

                         π                 2                         ∞              2

                     ∫   X(e)   dω =          ∑   x(n)    =  2π(1 + 1 + 4 +1 + 1 + 4 + 1 + 1) = 28π

                      -π                                       n = -∞

 

Q.45                                                                      If the z-transform of x (n) is X(z) with ROC denoted by , find the 

      z-transform of  and its ROC.

Ans:

              z             

               x(n)                 X(z),     RoC Rx

                                  n                       0                        ∞

           y(n) =      ∑ x(k) =       x(n-k) =      x(n-k)

                                k = -∞               k = ∞                  k = 0

                                                   ∞

* Y(z) = X(z)     ∑ z-k  =    X(z) , RoC at least Rx ∩ (׀z׀ > 1)

                                              k = 0              1 - z-1

 

                                 Geometric series

    

Q.46 (i)   x (n) is a real right-sided sequence having a z-transform X(z).  X(z) has   two poles, one of which is at  and two zeros, one of which is at .  It is also known that .  Determine X(z) as a ratio of polynomials in .

 (ii) If  in part (b) (i), determine the magnitude of X(z)   on the unit circle.

 

    Ans:                                                              z

.       (i)  x(n) : real, right-sided sequence                       X(z)       

 

X(z) =  K  (z- re-jθ)(z- re)       ; ∑x(n) = X(1) = 1     

                               (z- ae)( z- ae-jΦ)

     = K  z2 –zr (e+e-jθ) + r2

                            z2 –za (e+ e) + a2

 

     = K  1 – 2r cosθ z-1 + r2 z-2    = K. N(z-1)

             1 – 2a cosΦz-1 + a2 z-2                D(z-1)

 

where   K. 1 – 2r cosθ + r2  = X(1) = 1

               1 – 2a cosΦ + a2

 

 

i.e., K =    1– 2a cosΦ + a2

              1 – 2r cosθ + r2 

 

      (ii) a = ½, r = 2, θ = Φ = π/4 ; K = 1 – 2(½).(1/√2) + ¼    = 0.25

                                                             1 – 2(2) (1/√2) + 4

 

X(z) = (0.25) .  1 – 2(2) (1/√2) z-1  + 4z-2    

                                     1 – 2(½).(1/√2) z-1 + ¼ z-2    

 

 

        = (0.25)      1 - 2√2 z-1  + 4z-2                X(e) =        (0.25)     1 - 2√2 e-jω   + 4 e-2

                       1 – (1/√2) z-1 + ¼ z-2                                          1 – (1/√2) e-jω   + ¼ e-2

              = - 2√2 +  e   + 4 e-jω

                -2√2+ 4e   +  e-jω

            *     X(e)    = 1

 

 

Q.47  Determine, by any method, the output y(t) of an LTI system whose impulse

           response h(t) is of the form shown in fig(a). to the periodic excitation x(t) as    shown   

           in fig(b).                                                   

    Ans:

 

 

 

 

 

 

                                                                                          2

                                  Fig(a)                                           Fig(b)

                                                 

h(t)  = u(t) – u(t-1)   => H(s) =  

First period of x(t) , xT(t) = 2t [u(t) – u(t- ½) ]

 

= 2[ t u(t) – (t-1/2) u(t-1/2) –1/2 u(t-1/2)]   

\ XT(s) = 2 [(1/s2 )– (e-s/2 / s2 )– (1/2) e-s/2 / s ]

X (s)  =   XT(s) / 1 – e-s/2    

Y(s)  =.   2    

        

 

         =

         = 2

Therefore y(t) = t2 u(t) – (t-1)2 u(t-1) –

 

 

 

This gives y (t) =  t2               0<  t < 1/2

                              t2 –t +1/2   1/2 <   t < 1

                             1/2                         t >1

t

                           (not to scale)

 

Q.48  Obtain the time function f(t) whose Laplace Transform is .

Ans:

 

               F(s) =   s2+3s+1     =   A    +   B     +  C     +  D    +   E

                         (s+1)3(s+2)2    (s+1)   (s+1)2  (s+1)3   (s+2)   (s+2)2

 

               A(s+2)2(s+1)2 + B(s+2)2(s+1) + C(s+2)2 + D(s+1)3(s+2) +E(s+1)3 = s2+3s+1    

 

Oval:  C = –1               C = s2+3s+1           =  1-3+1 = -1

                       (s+2)2    s= -1         1

Oval:  E = 1
 


E = s2+3s+1           =  4-6+1  = 1

                        (s+1)3   s= -2       -1

 

A(s2+3s+2)2 + B(s2+4s+4)(s+1) + C(s2+4s+4) + D(s3+3s2+3s+1)(s+2) + E(s3+3s2+3s+1) = s2+3s+1    

 

A(s4+6s3+13s2+12s+4) + B(s3+5s2+8s+4) + C(s2+4s+4) + D(s4+5s3+9s2+7s+2) + E(s3+3s2+3s+1) = s2+3s+1

 

s4    :     A+D = 0

s3  :   6A+ B+ 5D +E = 0           ;     A+B+1 = 0      as 5(A+D) = 0, E = 1   

s2  : 13A+5B+C+9D+3E = 1     ;   4A+5B+1 = 0    as 9(A+D) = 0, C = -1, E = 1

s1  : 12A+8B+4C+7D+3E = 3   ;   5A+8B-4 = 0     as 7(A+D) = 0, C = -1, E = 1

s0  :   4A+4B+4C+2D+E = 1

 

 

 

Oval:  B = 3
 


A+B = -1 ; 4(A+B)+B+1 = 0 or –4+B+1 = 0   or  

 

Oval: A = – 4
 


          *   A = -1-3 = - 4

Oval:  D = 4
 


A+D = 0 or D = -A = 4

         

          *  F(s) =  - 4    +   3     +   -1     +   4     +   1

                        (s+1)    (s+1)2    (s+1)3    (s+2)   (s+2)2

 

 

     *  f(t) = L-1[F(s)] = - 4e-t + 3t e-t – t2 e-t + 4e-2 t + t e-2t = [e-t(-4 + 3t - t2) + e-2 t(4 + t)] u(t)

 

          *  f(t) =  [e-t(-4 + 3t - t2) + e-2 t(4 + t)] u(t)

 

Q.49   Define the terms variance, co-variance and correlation coefficient as applied to     

           random variables.                                        

 

Ans:

                                                                                                             

   Variance of a random variable X is defined as the second central moment

E[(X-μX)]n, n=2, where central moment is the moment of the difference between a random variable X and its mean μX i.e.,

                       + ∞

σX² = var [X] = ∫    (x- μX)² fx(x) dx

                                    -∞

     Co-variance of random variables X and Y is defined as the joint moment:

 

σXY = cov [XY] = E[{X-E[X]}{Y-E[Y]}] = E[XY]-µXµY

 

where µX = E[X] and µY = E[Y].

 

      Correlation coefficient ρXY of X and Y is defined as the co-variance of X and Y normalized w.r.t σXσY :

 

   ρXY  =  cov [XY]    =    σXY              

                     σXσY              σXσY