DipIETE – ET/CS (NEW SCHEME)      Code: DE55 / DC55

 

Subject: ENGINEERING MATHEMATICS - II

Flowchart: Alternate Process: JUNE 2010Time: 3 Hours                                                                                                     Max. Marks: 100

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

 

 

 

 

Q.1       Choose the correct or the best alternative in the following:                                  (210)

                

             a.  The value of   is

 

                  (A)                                                  (B) 1

                  (C)  0                                                   (D) 2

 

             b. If , then  is equal to   

 

                  (A)                                        (B)

                  (C)                                (D) None of these

 

             c.  If  then  is equal to  

 

                  (A) 23+2i                                             (B)

                  (C) 20+2i                                             (D)

 

             d.  The Modulus of 3-4i is equal to  

 

                  (A)                                                 (B) 5

                  (C)                                                (D) 5i

 

             e.  The cosine of angle between the vectors  and j+k is  

 

                  (A)                                                 (B)

                  (C)                                                 (D)

 

             f.   The value of  is  

                 

                  (A)                                             (B)

                  (C)                                               (D)

 

             g.   If roots are real & different, then C.F. (complementary function) is equal to   

 

                  (A)                                     (B)

                  (C)                     (D) None of these

 

             h.  The Fourier series of a function f(x) of period  is given by   

                                                                                                                                                                       

(A)                                                                     

(B) 

                  (C)                      

                  (D)

 

             i.   is equal to  

 

                  (A)                                              (B)

                                                                              (C)                                                (D)

                       

             j.   is equal to    

 

                  (A)                                                 (B)

                  (C)                                        (D)                                                        

            


 

 

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

 

 

  Q.2     a.   Verify Rolle’s Theorem for  in .                                                    (8)

                  

             b.   Using Maclaurin’s series, expand tan x upto the term containing.                    (8)

 

  Q.3     a.   Evaluate .                                                                         (8)

            

             b.   Find the volume of sphere of radius ‘a’.                                                              (8)

 

  Q.4     a.   If n is a positive integer, prove that  where  .                      (8)

       

             b.   Express  in the form of a+ib and find Modulus of the number.                   (8)

 

  Q.5     a.   Show that the points, , 5i+7j+3k and are coplanar.                                                                  (8)

 

             b.   Find the area of the parallelogram determined by the vectors i+2j+3k and .                (8)

       

  Q.6     a.   Solve the differential equation .                          (8)

 

             b.   In an L-C-R circuit, the charge q on a plate of a condenser is given by .       

                   The circuit is tuned to resonance so that .  If initially the current i and the charge q be zero, so that value of , the current in the circuit at a time t is given by .                         (8)

 

Q.7    a.    Obtain the Fourier series for f(x) = in the interval .                     (8)

 

             b.   Expand f(x) = 1 in a sine series in 0 < x < .                                                      (8)

 

  Q.8     a.   Find Laplace transform of sin2t.                                                                         (8)

 

             b.   Find Laplace transform of cos5t.   (8)

 

  Q.9     a.   Find L -1.                                                                                    (8)

 

             b.   Solve the differential equation using Laplace transform, subject to condition y(0)=3,  and         (8)