AMIETE – ET (NEW SCHEME)      Code: AE61

 

Subject: CONTROL ENGINEERING

Flowchart: Alternate Process: JUNE 2010Time: 3 Hours                                                                                                     Max. Marks: 100

 

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

Q.1       Choose the correct or the best alternative in the following:                                  (210)

          

a.  

 
A disc of inertia J initially at rest acted upon by a torque T(t) as shown in      Fig.1, is described by

 

                  (A)                (B)                                                                                         

                  (C)                  (D)    

 
 


             b. The number of feedback loops present

                  in the signal flow graph of Fig.2, is                                 

 

                  (A) 1                               (B) 2

                  (C) 3                               (D) 4

 
 


             c.  For the pole-zero plot of Fig.3, the

                  damping ratio  is given by                                  

  

                  (A)                          (B)

                  (C)                     (D)

 

d.    If the root-locus of a system with

 
                                                                  is a circle as shown in

                                                                 Fig.4, then    

                 

                  (A) K is negative                                 

                  (B) number of asymptotes is 0                                      

                  (C) plot will not cut the imaginary axis  

                                                                              (D) all of the above.

 

            

             e. A system whose characteristic equation is  will be stable by Routh-Hurwitz criterion, if  

    

                  (A) K>0                                               (B) K>2

                  (C)                                            (D) K>3

             f.   The undamped natural frequency  of a system with  is

 
                  (A)                                                 (B)  

                  (C)                                               (D)

 

             g. The transfer function G(s) corresponding

                   to the polar plot of Fig.5, is of the form                            

                  (A)                                           (B)

                  (C)                                                  (D)

                          

h.    The instantaneous rms value of voltage proportional to the rotor speed  developed on a tachometer with sensitivity  is given by

(A)                                    (B) 

                  (C)                                   (D)   

             i.   A linear system described by the differential equation, with  as the state variables has the state model

                  (A)   (B)                                       

                  (C)            (D)

 

             j.   Consider a nonlinear system described by,, with  and a possible Liapunov function .  The system is  

                  (A) unstable                                                (B) having unstable limit cycles                                     

                  (C) locally stable or stable-in-the-small        (D) asymptotically stable

 

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

 

  Q.2     a.   For the mechanical system of Fig.6, draw the free-body diagram and write the differential equation of the system. Draw the electrical analogue using force-voltage analogy.                                       (8)

 

 
 


                                                                                                                            

                          

 

 

 

 

 

             b.   For the electrical network as shown in Fig.7, write the Laplace equivalent, transfer function for each circuit element. Find the transfer function of model block-diagram.                                                (8)

  Q.3     a.   Using block-diagram reduction technique, obtain the overall transfer function for the system as shown in Fig.8.                                                                                                                            (8)

 

 
 

 

 


                                                                                                                    

                                        

 

                                                                                                                                             

 

 

 

 

 

             b.   Applying Mason’s gain formula obtain the overall transfer function for the signal-flow graph as shown in Fig.9.                                                                                                                (8)

 
  Q.4     a.   Consider the feedback system shown in Fig.10, with time-constant  and . (i)  Sketch the closed-loop system response c(t) for an impulse input . (ii)  Show that the effect of feedback is to increase the bandwidth.                                                                                                      (4+4)

 
 

 


                  

 

 

 

 

 

 

 

             b.   Derive the transfer function  of the hydraulic pump-motor system described by Fig.11, where  are constants, p=pressure drop across the motor, =coefficient of compressibility, = angle through which the motor turns, =leakage oil flow rate.                                                                 (8)

                          

  Q.5     a.   A second-order unity feedback control system has an open-loop transfer function .  By what factor should the amplifier gain A be multiplied so that

                   (i)   The damping ratio is increased from a value of 0.2 to 0.6?

                   (ii)  The overshoot of the unit step response is reduced from 80% to 20%?         (4+4)

 

            b.   A signal actuates a control system described by , where K is a constant and .  Apply Routh-Hurwitz criterion to the characteristic equation 1+E(s) = 0 and find the value of K to keep the system stable.  Assume zero initial conditions.                           (8)

 

  Q.6     a.   Consider the unity feedback control system with.  Sketch the root-locus on a graph sheet, and determine the damping factor. Find the corresponding value of K.                      (8)

             b.   Consider the root  for nominal gain  for the system.  Compute the root sensitivity to K, z and p.                 (8)

 

  Q.7     a.   Construct the Nyquist plot and determine the stability of the system.                (10)

 
             b.   Define gain margin and phase margin.  From the Bode plot diagram drawn in Fig.12, determine the gain margin and phase margin. State whether the system is stable.                                              (6)

 

 

 

 

                                              

 

 

 

 

 

 

   Q.8    a.  A unity feedback type-2 system with  has its closed-loop poles always lying on the -axis on its root-locus.  It is desired to compensate the system to satisfy that settling time  and damping factor.  Indicate on the s-plane the locations for the compensator pole and zero and obtain the open-loop transfer function.                                                          (8)

             b.   For each compensator-lead, lag, lag-lead, write (i)  typical electrical network, (ii) s-plane representation and (iii) transfer function. Explain the need for compensation networks in control systems.          (6+2)

                  

  Q.9     a.   Determine the state controllability and observability of the linear system, described by the equation  where                     (8)

             b.   The state equation of a linear time-invariant system is represented by:  Write the characteristic equation and obtain the state transition matrix.                         (8)