AMIETE – ET/CS/IT (NEW SCHEME)      Code: AE57/AC57/AT57

 

Subject: SIGNALS AND SYSTEMS

Flowchart: Alternate Process: JUNE 2010Time: 3 Hours                                                                                                     Max. Marks: 100

 

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

 

 

Q.1       Choose the correct or the best alternative in the following:                                  (210)

       

             a.  Signal x (t) = cos t if t < 0; and x (t) = sin t if t > 0 is _________.  

 

                  (A) periodic                                          (B) non-periodic                                                                            

                  (C) limitedly periodic                            (D) can’t define                                                    

 

             b. System y (n) = [2x (n) – x 2(n)] 2 is __________.

  

                  (A) with memory                                  (B) memory less

                  (C) requires additional data                   (D) can’t defined

 

             c.  u(n) = is correct ___________.

                

                  (A) all time                                           (B) sometime

                  (C) never                                              (D) requires additional data

 

             d.  For h (n) = an u (n); H (e  ) equals __________.

 

                  (A) 1 / (1 – a e )                            (B) 1 / (1 + a e )

                  (C) 1 / (1 + a e)                             (D) 1 / (1 – a e )

 

             e.  Fourier transform of x (t) =1 is ________.

 

                                                                              (A) 2π δ ()                                      (B) π δ ()

                                                                              (C)  π/2  δ ()                                     (D) 2π δ (2)

 

             f.   In filter, the width of the ‘Transition Band’ is Characteristics of ________.

 

                  (A) Fourier series                                 (B) Fourier Transform

                  (C) Frequency domain                          (D) Time domain

                 

                        

             g. Any signal x (t) can be represented as ____________.

 

                  (A) xe(t)                                  (B) xe(t) – xo(t)

                  (C)                                            (D) xe(t)  xo(t)

                  where xe(t)  and xo(t) are even and odd parts of the signal x(t).                                            

            

             h.  x ( 0 + )  = defines __________.

                                                                                                                                                          

(A)  initial value Theorem                       (B) final value theorem

                  (C) both (A) & (B)                               (D) None.

 

i.      The ROC does not contain any pole in Z-transform. This statement is _________.

                                                           

                  (A) false                                               (B) true

                  (C) requires Additional data                  (D) can’t define

 

             j.   All ergodic processes are ___________ processes.

 

                  (A) non - stationary                              (B) marginally - stationary                                                  

                  (C) stationary                                       (D) semi - stationary

 

 

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

 

 

  Q.2     a.   Consider the system y (n) = 2 x (n) + 3. Determine whether the system is linear or non–linear. Calculate the Zero-Input Response of the system. Draw the structure of the above system.                      (8)

                                                                                                                                                

             b.  For an LTI system with input x (n) and unit impulse response h(n) specified as                 follows: 

                        x (n) = 2 n u (–n) & h (n) = u(n) ;

                   determine and plot output signal y(n).                                                                      (8)

 

  Q.3     a.   Consider the periodic impulse train and defined by . Determine the complex exponential Fourier series of .                                                                         (8)

 

             b.   Plot magnitude and phase of the Fourier coefficients for the signal

                           x (t) = 1 + sin t + 2cos t + cos (2 t + π /4);

                   where ω is the fundamental frequency of the signal.                                                (8)

            

  Q.4     a.   Let ; a > 0. Plot signal x (t). Also, obtain and plot Fourier Transform of signal x (t).                                                                (8)

                  

             b.   Consider a stable LTI system characterized by the differential equation

                    d 2 y (t) / dt 2 + 4 dy(t) / dt + 3y(t)  = d x(t) / d(t) + 2x(t). Obtain h (t).               (8)

 

  Q.5     a.   For the periodic signal x (n) =cos on ; Obtain & plot Discrete Time

                   Fourier Transform of x (n), where o is the fundamental frequency of

                   the signal.                                                                                                           (8)

 

             b.   Consider a causal LTI system characterized by the difference equation

        y(n) – ( 3 / 4) y ( n–1) + ( 1 / 8) y ( n – 2) = 2 x(n)  ; Obtain frequency.             (8)

                                                                             

  Q.6     a.   Explain the following with suitable example:                                                         (8)

 

                   (i)   Linear and non-linear phase

                   (ii)  Group delay

 

             b.   Define NYQUIST RATE and ALIASING. Determine the Nyquist rate corresponding to each of the following signals:                                  (8)

                   (i)   x (t) = 1+ cos( 2000 π t)+ sin (4000 π t)

                   (ii)  x (t) = sin  (4000 π t) / π t

                   (iii) x (t) = { sin (4000 π t) / π t }2

            

  Q.7     a.   Obtain the Laplace transform of the signal

                     x(t) = e 2t  u(t) + e t (cos3t)  u(t).                                                                  (8)

                  

             b.   The output y (t) of a continuous-time LTI system is found to be  when the input x (t) is u (t).  Find the impulse response h (t) of the system. using Laplace Transform.                                      (8)

                                                                                                 

  Q.8     a.   A wide sense stationary noise process has an autocorrelation function

                   Rnn ( τ ) = K e –3 | τ |  where K is a constant. Find its power spectral density.    (8)

                                                      

      b.   Write a short note on:                                                                                        (8)

 

                                                                              (i)  Power Spectral Density.

            (ii) Gaussian Processes.

          

  Q.9     a.   y(n) – (1 /2) y (n–1) = x (n) + (1/3) x (n–1); Obtain impulse response of the system using Z-transform only for ROC | z| >1.                                  (8)

                                                                                                 

 b.   For the signal x (n) = an, 0 ≤ n ≤ N–1; a > 0   and   x (n) = 0, otherwise. Calculate                    the Z-Transform of x (n). Plot pole-zero pattern for N =16.                         (8)