AMIETE – ET/CS/IT (NEW SCHEME)      Code: AE56/AC56/AT56

 

Subject: ENGINEERING MATHEMATICS - II

Flowchart: Alternate Process: JUNE 2010Time: 3 Hours                                                                                                     Max. Marks: 100

 

 

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

 

 

Q.1       Choose the correct or the best alternative in the following:                                  (210)

       

             a.  A solution of (y – z) p + (z – x) q = x – y is 

 

                  (A) x2 + y2 + z2 = c                              (B) xyz = c                                                                        

                  (C) xy/z = c                                          (D) x2 + y2 – z2 = c                                              

 

             b. The harmonic conjugate of u = x3 – 3xy2 is

  

                  (A) y3 – 3xy2                                        (B) 3x2y – y3

                  (C) 3xy2 – y3                                        (D) 3xy2 – x3

 

             c.  The value of the integral  where c is  is

 

                  (A) πi                                                   (B) 0

                  (C) 2πi                                                 (D) 4πi

 

             d.  The invariant points of the bilinear transformation   is

 

                  (A) 1 ± 2i                                             (B)  –1± 2i

                  (C)  ± 2i                                               (D) invariant point does not exist.

 

             e.  If  with y (0) = 1. The value of k1, k2, k3, k4 by taking h = 0.1 using IV order Runge Kutta method is

            

(A) 0.05, 0.066, 0.066, 0.0833            (B) 0.066, 0.066, 0.05, 0.08

                  (C) 0.1, 0.2, 0.2, 0.08                          (D) 0.1, 0.08, 0.2, 0.2

 


             f.   The value of the integral   by using Simpson’s 3/8th rule is 

            

                  (A) 0                                                    (B) 1.286

                  (C) 1.357                                             (D) 1.5

 

             g. If  is ant vector field  then  

                 

                  (A)   is said to be a solenoidal vector.

                  (B)   is said to be a solenoidal vector.

                  (C)   is said to be irrotational.

                  (D)   None of these.

            

             h.  If   is a pdf then the value of k is equal to

 

(A)  2                                                    (B) 1/9

                  (C) 1                                                    (D) 1/18

 

             i.   If x is a binomial variate with p = 0.2, for the experiment of 50 trials, the standard deviation is equal to

                 

                  (A) –8                                                  (B) 8

                  (C)  0                                                   (D) 1

 

             j.   Green’s theorem states that  is  

 

                  (A)                        (B)                                                      

                  (C)                         (D)

 

 

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

 

 

  Q.2     a.   Construct the analytic function f (z) = u + iv given.         (8)                      

             b.   Determine the region of the w-plane into which the lines parallel to x and y axis in the z – plane are mapped by the transformation w = z2.               (8)

       

  Q.3     a.   State and prove Cauchy’s integral formula in the form.                                                                                                                                                                (8)

             b.   Obtain the Laurent’s series expansion of   in the region  .                             (8)

 

  Q.4     a.   Find the values of ‘a’ and ‘b’ such that the surfaces ax2 – byz = (a + 2) x and 4x2y + z3 = 4 cut orthogonally at (1, –1, 2)                                         (8)

            

             b.   Show that .                                                                   (8)

 

Q.5    a.   Verify Green’s theorem for where c is bounded by y = x and y = x2.                                                                      (8)

 

             b.   Evaluate by using stoke’s theorem  where c is the boundary of the rectangle 0 ≤ x ≤ π : 0 ≤ y ≤ 1, z = 3.                 (8)

       

  Q.6     a.   From the following table, estimate the number of students who have obtained marks between 40 and 45.                                                               (8)

 

                   Marks              30 - 40        40 - 50           50 - 60               60 -70           70 - 80

             No. of students       31                 42                  51                  35                     31

 

             b.   Evaluate using (i) Simpson’s 1/3rd rule (ii) Simpson’s 3/8th rule.

                                                                                                                                           (8)

 

            Q.7      a.         Solve the differential equation.                                                                                                                                                (8)

 

            b.    Using the method of separation of variables solve                                                     .                                                      (8)

                

  Q.8     a.   If A and B are any two events prove that P(AB) = P(A) + P (B) – P(AB) and hence prove that if A, B and C are any three events.                  (8)

                  

                  

 

             b.   A bag contains 3 coins of which one is two headed and the other two are normal & fair. A coin is selected at random and tossed 4 times in succession. If

 

                   all the four times it appears to be head what is the probability that the two headed coin was selected.                                                                      (8)

 

  Q.9     a.   An airline knows that 13% of the people who make reservations on a certain flight will not turn up. Consequently their policy is to sell 12 tickets which can

                   accommodate only 10. What is the probability that everyone who turns up on a

                   given day is accommodated?                                                                              (8)

 

             b.   In a test on 2000 electric bulbs, it was found that the life of a particular make was normally distributed with an average life of 2040 hrs and S.D of 60 hrs. Estimate the number of bulbs likely to burn for

                   (i)   more than 2150 hrs                      

                   (ii)  less than 1950 hrs

                   (iii) more than 1920 hrs & less than 2160 hrs.

                                                                             

                   Assume A (1.83) = 0.4664, A (1.33) = 0.4082, A (2) = 0.4772.                       (8)