AMIETE – ET/CS/IT (NEW SCHEME)      Code: AE51/AC51/AT51     

 

Subject: ENGINEERING MATHEMATICS - I

Flowchart: Alternate Process: JUNE 2010
 


Time: 3 Hours                                                                                                     Max. Marks: 100

 

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

 

 

Q.1       Choose the correct or the best alternative in the following:                                  (210)

       

             a.  The sum and product of the eigen value of the matrix A =  are respectively 

 

                  (A) 7 and 7                                          (B) 7 and 5                                                                       

                  (C) 7 and 6                                          (D) 7 and 8                                                          

 

             b. If  where , then A is   

 

                  (A)                                           (B)

                  (C)                                        (D)

 

             c.  If z =  then  is  

 

                  (A) z                                                    (B) 2z

                  (C) tan z                                               (D) sin z

 

             d.  The order of convergence of Newton-Raphson method is  

 

                  (A) 0                                                    (B) 1

                  (C) 2                                                    (D) 3

 

 

 

 

             e.  The Wronskian of x and  is

 

                  (A)                                        (B)

                  (C)                                        (D)

                 

             f.   To transform  into a linear differential equation with constant coefficients, the required substitution is  

 

                  (A) x = sin t                                          (B)                                                                    

                  (C) x = log t                                         (D)

 

             g. The particular integral (PI) of differential equation  is  

 

                  (A)                                           (B)

                  (C)                                               (D)

            

             h.  Which of the following is ‘Rodrigue formula’

 

(A)                (B)

                  (C)          (D)

 

             i.   The value of  is

 

                  (A)                                     (B)

                  (C)                                     (D)

 
 


             j.   The value of              is  

 

                  (A)                                            (B)                                                                         

                  (C)                                            (D)


 

 

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

 

 

  Q.2     a.   Find the maximum and minimum distances of the point (3, 4 , 12) from the sphere .                                                                     (8)

                  

             b.   Using differentiation under integral sign, evaluate .                 (8)

            

  Q.3     a.   Change the order of integration in and hence evaluate the same.          (8)

                                                                                                                                               

             b.   Calculate, by double integration, the volume generated by the revolution of the cardioids  about its axis.                                       (8)

 

  Q.4     a.   Find the values of k for which the system of equations

                  

                   has a non-trivial solution.                                                                                    (8)

       

             b.   Find the eigen values and eigen vectors of the matrix .                (8)

            

  Q.5     a.   (i)  Develop the Newton-Raphson method to find the square root a number N. (where N > 0)

                   (ii)  Give the geometrical interpretation of Newton-Raphson method.          (4+4=8)

 

             b.   Determine the largest eigen value and the corresponding eigen vector of the matrix A, using power method.

                                                                                                            (8)

 

  Q.6           Solve the following differential equations                                                                 

                   (a)                                                                                (8)

                   (b)                                                                                          (8)

 

  Q.7     a.   Solve by the method of variation of parameters .              (8)

 

             b.   Solve .                                                                     (8)

 
       

  Q.8     a.   Prove that                                                                            (8)

 

             b.   Solve in series the equation .                                                          (8)

 

  Q.9     a.   Prove the following                             

                   (i) 

                   (ii)                                                                    (8)

                  

             b.   Express  in terms of Legendre polynomials.         (8)