AMIETE – ET (OLD SCHEME)

 

Flowchart: Alternate Process: JUNE 2010Code: AE11                                                                       Subject: CONTROL ENGINEERING

Time: 3 Hours                                                                                                     Max. Marks: 100

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

 

Q.1       Choose the correct or the best alternative in the following:                                  (210)

 

a.       For the system  letting  as ,    

                   (A)   a small angle          (B)  a small angle

(C)    a small angle        (D)  a small angle

 

 

 


            

 

 

 

 

 

b.      For the inertia-damper rotational system with a rigid shaft shown in Fig. 1 the torque equation is:

 

(A)    0.2s            (B)

(C)         (D)                                                           

            

c.       The output c(t) for an impulse input r(t)=  for the system of Fig. 2 is:   

(A)                                   (B)  

(C)                                     (D)  

 

             d.   The time constant of the second order-system is:

(A)    0.2s                                   (B)  12s

(C)  60s                                     (D)  10s

            

             e.   The origin for the frequency response plot is (0 dB gain, –180phase) in:  

(A)     Root-locus                          (B)  Nichols chart

(C)  Nyquist plot                        (D)  None of these

 

             f.    The type of the system and the velocity error constant for the system with are given by:

(A)     1 and                                     (B)  1 and

(C)  1 and                                     (D) 1 and

 

             g.   The point of intersection of the asymptotes (centroid) for the root-locus of the system, is:  

(A)    0                                                  (B)  2

(C)  3                                                  (D) 5

 

 
             h.   Application of Routh-Hurwitz criterion to the system of Fig. 3 shows that it will be unstable for:                                                                             

                   (A)                                            (B)

(C)                                            (D)

 

 

             i.    The basic circuit of Fig. 4 represents a:

(A)  lag compensator                          

 
(B)  lead compensator

(C)  lag-lead compensator                  

(D) lead-lag compensator

 

 

 

 
             j.    While using digital implementation of analog

                   compensators, the integral approximation

                   procedure shown in Fig. 5 is called:

                   (A) forward rectangular rule                

                   (B) forward difference approximator

(C) trapezoidal rule                             

(D) backward rectangular rule

 

 

 

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

 

Q.2       a. Consider an external force F(t) applied to mass M1 as in Fig. 6. Write the free- body diagram and the differential equations. Draw the electrical equivalent network using force-current analogy.      (8)

 
 

 

 

 

 

 

 

 


            

            

 

            

 

 

             b.   With a neat diagram, explain the function of an ac tacho-generator and obtain its transfer function.                                                              (8)

 

Q.3       a. Using block-diagram reduction technique, find the closed-loop transfer function of Fig 7.                   (8)

 

 
 

 


                                     

 

 

 

 

                                                                                                                                                

            

                       

            

 

              b.  Obtain the overall transfer function of the system whose signal-flow graph is shown in Fig. 8, using Mason’s gain formula.                                        (8)

 

 

 

 

 

 

 

 

 

 

 

 

 


  Q.4     a.   Consider the feedback control system of Fig. 9 with a disturbance input W(s). Show that feedback reduces the effect of disturbance on the controlled output. Obtain the sensitivity function S(j) of the system and the disturbance transfer function. How is disturbance rejection accomplished?                (8)

             b.   Determine the damping ratio  and the values of ‘a’ and ‘b’ if the first overshoot is 16% and time-constant is 0.1 sec for the system forward path transfer function G(S)= 10/S2 and feed back H(S)= (as+b).     (8)

 

Q.5       a.   Use Routh stability criterion to check the stability of systems with characteristic equation: (i), and show (ii)  has all roots with real parts more negative than –1.                                                      (8)

             b.   For the unity feedback system:  state the type of the system and identify its poles and zeros. Determine the steady state errors for a unit step input, a unit ramp input and an acceleration input, . If this system is required to follow a parabolic input signal, will it perform satisfactorily?                                                                                                     (8)

 

  Q.6     a.   Draw a typical passive electrical network and the pole-zero plot, and write the transfer function for each type of compensator: lead, lag and lag-lead. Explain the need for compensation networks in control systems.                                                           (8)

             b.   Sketch the root-locus for a unity feedback system having forward path transfer function as and find the value of K when the root-locus cuts the -axis.                       (8)

  Q.7     a.    For a standard  second order system , show that the phase-margin is given by . Calculate. What will be the approximation for  for low values of damping ratio ?                                                                             (8)

 

             b.   Sketch the Nyquist plot and determine the stability of the system                                                                     (8)                                                             

 

  Q.8     a.   The transfer function of a lead compensator is given by  Find the magnitude of  at the frequency  of maximum phase lead  and express in terms of . If                                                        (8)

 
             b.    Obtain the open-loop transfer function of the system whose Bode magnitude plot is shown in Fig. 10.                                                                    (8)

 

 

 

 

 

 

 

 

 

       

       

 

 
 


  Q.9     a.   Consider the circuit of Fig. 11 with an ideal op-amp. Derive the transfer function in terms of: (i)  (ii) circuit elements. Show that the circuit process the input signal by “proportional + integral + derivative” action.                                      (8)                                                                                    

 

 

             b.   What is a robust control system? List the model uncertainty factors that should be considered to make the system design robust.                           (8)