AMIETE – ET/CS/IT (OLD SCHEME)

 

 

Flowchart: Alternate Process: JUNE 2010Code: AE01/AC01/AT01                                                                  Subject: MATHEMATICS-I

Time: 3 Hours                                                                                                     Max. Marks: 100

 

NOTE: There are 9 Questions in all.

·      Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.

·      Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

·      Any required data not explicitly given, may be suitably assumed and stated.

 

 

Q.1      Choose the correct or the best alternative in the following:                                   (2  10)

 

a.       The value of limit  is

        (A)  limit does not exist                              (B)  0  

        (C)  1                                                       (D)  -1

 

b.  If  , then the value of  is

        (A)  u                                                        (B)  2u

        (C)  3u                                                      (D)  0

 

c.        The solution of the  differential equation  is given by

        (A)                          (B)          

        (C)                            (D) 

 

d.    The solution of the differential equation  is

        (A)                         (B) 

        (C)                        (D) 


e.    If 3x+2y+z= 0, x+4y+z=0, 2x+y+4z=0, be a system of equations then

 

        (A)  System is inconsistent.                       

        (B)  It has only trivial solution.

        (C)  It can be reduced to a single equation thus solution does not exist.      

        (D)  Determinant of the coefficient matrix is zero.

 

f.        If λ is an eigenvalue of a non-singular matrix A then the eigenvalue of A-1 is

 

        (A)  1/ λ                                                   (B)  λ

        (C)  –λ                                                     (D)  –1/ λ

 

g.       The value of  is

(A)    –1                                                  (B)  1

        (C)                                                  (D)  0

h.       The  value of integral  is equal to

        (A)                                                       (B) 

        (C)                                                        (D) 

i.         If   then

 

        (A)                                  (B) 

        (C)                                (D) 

 

j.        The value of  the integral is

 

        (A)                                         (B) 

        (C)                                        (D) 

 

Answer any FIVE Questions out of EIGHT Questions.

Each Question carries 16 marks.

 

 

   Q.2      a.   Find the extreme value of the  function   f(x,y,z) = 2x + 3y + z      such that x2+y2 = 5 and x + z =1.           (8)

              

              b.   Show that the function  is continuous at (0,0) but its partial derivatives of first order does not exist at (0,0).                                                    (8)

 

   Q.3      a.   Evaluate  by changing to polar coordinates.  Hence show that .          (8)

 

               b.   Show that the approximate change in the angle A of a triangle ABC due to small changes  in the sides a, b, c respectively, is given by  where ∆ is the area of the triangle. Verify that                                                                              (8)

 

   Q.4     a.   If  Show that

                                                                                                           (8)

 

               b.   Using the method of variation of parameter method, find the general solution of the differential equation.                                                                             (8)

        

   Q.5      a.   Find the general solution of the equation.                 (8)

 

               b.   Find the general solution of the equation .                     (8)

 

   Q.6      a.   Solve                                                                       (8)

 

b.      If , show that AA* is a Hermitian matrix, where

      A* is the conjugate transpose of A.                                                                     (8)

   Q.7      a.   Show that the matrix A is diagonalizable. .  If so, obtain the   matrix P such that  is a diagonal matrix.                                                                                                   (8)


 

               b.   Investigate the values of λ for which the equations 

                    

                     are consistent, and hence find the ratios of x:y:z when λ has the smallest of these values.    (8)

   Q.8      a.   Use elementary row operations to find inverse of                (5)

 

               b.   Find the first five non-vanishing terms in the power series solution of the initial value problem                                     (11)

 

   Q.9      a.   Show that                                        (8)

 

               b.   Show that                                                     (8)