ROLL NO.

 Subject: Microelectronics & VLSI Design

ALCCS

Time: 3 Hours

FEBRUARY 2014

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE:

- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.
- **Q.1** a. Explain short channel effect in MOSFET.
 - b. Describe molecular beam epitaxy method to grow crystal.
 - c. Explain photo- lithography process to fabricate circuit chips.
 - d. Estimate the number of gates that can be included on a logic gate array chip which is to be assembled in a 100 I/O package. Assume $\alpha = 4.5$ and $\beta = 0.5$
 - e. Explain body effect in MOSFET.
 - f. Explain the effect of scaling on circuit parameters.
 - g. Explain two PN diode model of BJT. (7×4)
- Q.2 a. Explain VLSI design flow. (10)
 - b. Give the comparison between CMOS and bipolar technologies. (8)

Q.3 a. What is diffusion? Explain models of diffusion in solids. (10)

- b. What is the stored charge and number of electrons on an MOS capacitor with an area of $4 \,\mu\text{m}^2$ a dielectric of 200 A° thick S_iO₂ and applied voltage of 5V? (8)
- Q.4 a. How VHDL is used to model the digital. (10)
 - b. Give state transition table for Mealy machine. (8)
- Q.5 a. Draw the block diagram of a general two-stage op-amp and explain the working operation of each block. (10)
 - b. Draw the two stage CMOS OPAMP Configuration and calculate its voltage gain. (8)

ROLL NO. _

Code: CT76

Subject: Microelectronics & VLSI Design

Q.6	a. Explain finite state machines.	(10)
	b. Explain fault model in VLSI design.	(8)
Q.7	Explain the importance of scaling of MOS transistor dimensions. Explain the types of scaling and show the effects of parameters in constant voltage scaling. (12)	
	b. List the characteristics of a system on a chip.	(6)