ROLL NO.

Code: CT72

Subject: COMPUTER GRAPHICS

ALCCS

Time: 3 Hours

FEBRUARY 2014

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE:

- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.
- **Q.1** a. How are different shades of colour generated on the RGB monitors?
 - b. Obtain a matrix for shearing an object along x-axis by L unit of length.
 - c. Write the open GL commands to plot a sphere of radius 3 units and rotate it around the diameter along line x = y in x-y plane.
 - d. Explain the concept related to C^2 continuity.
 - e. Find the transformation matrix for rotating (x, y, z) along X-axis by an angle 30° .
 - f. What is vanishing point? Which type of projections uses vanishing point?
 - g. Why hidden surfaces are removed while rendering a solid on the output screen? Write the name of two algorithms that are used to achieve this. (7×4)
- Q.2 a. Write an algorithm to draw a line and use the algorithm to find all pixels coordinate along the line between (1,12) and (7, 1).(9)
 - b. Write Scan line filling algorithm and use the algorithm to fill the inside area of the polygon bounded by (1, 1), (4, 4) and (7, 1). (9)
- Q.3 a. What do you mean by homogeneous coordinate system? How does it help in finding a composite matrix for different transformations applied in a sequence? Explain your answer with a suitable example.
 (9)
 - b. Using mid-point subdivision method, clip a line segment between lines (1, 1) and (8, 12) so that it can be displayed within a rectangular window bounded by (2, 1) and (12, 10).
- Q.4 a. Calculate the open uniform knot vector for a B-spline of 8 control points and order 4. Draw the curve based on eight control points. (8)

Code: CT72

Subject: COMPUTER GRAPHICS

- b. Determine the equation of Bezier curve over the interval for t=0: .01: 1 and control points are at (1, 1), (2, 1), (4, 3) and (3, 1). (10)
- Q.5 a. What are the issues involved in 3D clipping? How is it different from 2D clipping? Describe any one algorithm to clip 3D object. (9)
 - b. When a projection is called a cabinet projection and a cavalier projection? Determine the projection matrix for cabinet and cavalier projections. (9)

Q.6 a. Write the Painter's algorithm for back face detection. (9) b. Describe the Ray Tracing method of surface rendering. (9)

- **Q.7** Write a short note on any <u>**TWO**</u> of the followings:
 - (i) Self similar fractals.
 - (ii) Specular Reflection
 - (iii) Simulating acceleration in animation (9+9)