ALCCS

Time: 3 Hours

FEBRUARY 2014

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE:

- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.
Q. 1 a. How are different shades of colour generated on the RGB monitors?
b. Obtain a matrix for shearing an object along x -axis by L unit of length.
c. Write the open GL commands to plot a sphere of radius 3 units and rotate it around the diameter along line $\mathrm{x}=\mathrm{y}$ in $\mathrm{x}-\mathrm{y}$ plane.
d. Explain the concept related to C^{2} continuity.
e. Find the transformation matrix for rotating (x,y,z) along X-axis by an angle 30°.
f. What is vanishing point? Which type of projections uses vanishing point?
g. Why hidden surfaces are removed while rendering a solid on the output screen? Write the name of two algorithms that are used to achieve this.
Q. 2 a. Write an algorithm to draw a line and use the algorithm to find all pixels coordinate along the line between $(1,12)$ and $(7,1)$.
b. Write Scan line filling algorithm and use the algorithm to fill the inside area of the polygon bounded by $(1,1),(4,4)$ and $(7,1)$.
Q. 3 a. What do you mean by homogeneous coordinate system? How does it help in finding a composite matrix for different transformations applied in a sequence? Explain your answer with a suitable example.
b. Using mid-point subdivision method, clip a line segment between lines $(1,1)$ and $(8$, 12) so that it can be displayed within a rectangular window bounded by $(2,1)$ and $(12,10)$.
Q. 4 a. Calculate the open uniform knot vector for a B-spline of 8 control points and order 4. Draw the curve based on eight control points.
b. Determine the equation of Bezier curve over the interval for $\mathrm{t}=0: .01$: 1 and control points are at $(1,1),(2,1),(4,3)$ and $(3,1)$.
Q. 5 a. What are the issues involved in 3D clipping? How is it different from 2D clipping? Describe any one algorithm to clip 3D object.
b. When a projection is called a cabinet projection and a cavalier projection? Determine the projection matrix for cabinet and cavalier projections.
Q. 6 a. Write the Painter's algorithm for back face detection.
b. Describe the Ray Tracing method of surface rendering.
Q. 7 Write a short note on any TWO of the followings:
(i) Self similar fractals.
(ii) Specular Reflection
(iii) Simulating acceleration in animation

