$\qquad$

Time: 3 Hours

## FEBRUARY 2014

Max. Marks: 100
PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE:

- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.
Q. 1 a. Solve the recurrence relation $T(n)=27 T(n / 3)+\Theta\left(n^{3} \lg n\right)$
b. Given the following code fragment, what is its Big-O running time?

$$
\begin{aligned}
& \text { i = n; } \\
& \text { while i > } 0 \\
& \text { k = k + 2; } \\
& \text { i = i / 2; }
\end{aligned}
$$

c. Show the ordering of vertices produced by topological sort in the following graph. What is time complexity of topological sort?

d. Given a sorted array and a value $x$. Suggest $O(n)$ algorithm to find two values in the array whose sum is equal to x .
e. Suppose that the root of the Red-Black tree is red. If we make it black, does the tree remain a Red Black tree?
f. What are the conditions for a problem to be solved using Dynamic Programming.
g. Explain intractable problem with an example.
Q. 2 a. Give an efficient algorithm that determines whether or not a given directed graph $\mathrm{G}=$ (V, E) contains a cycle. Discuss its time complexity.
b. Suppose we wish to search a linked list of length $n$, where each element contains a key $k$ along with a hash value $h(k)$. Each key is a long character string. How might we take advantage of the hash values when searching the list for an element with a given key?
Q. 3 a. What is the difference between the binary-search tree property and the heap property? Can the heap property be used to print out the keys of an $n$-node tree in sorted order in $\mathrm{O}(n)$ time? Explain how or why not.
b. Consider a B-tree with degree $m$. i.e. the number of children $c$, of any internal node (except the root) is such that $m-1 \leq c \leq 2 m-1$. Derive the maximum and minimum number of records in the leaf nodes for such a B-tree with height $h(h \geq 1)$. (Assume that the root of a tree is at height 0 ).
Q. 4 a. Design a recursive solution to the matrix chain multiplication problem. Find an optimal parenthesization of a matrix chain product whose sequence of dimension is $<5,10,3,12,5,50,6>$
b. What is an optimal Huffman code for the following set of frequencies, based on the first 8 Fibonacci numbers?
a:1, b:1, c:2, d:3, e:5, f:8, g:13, h:21
Can you generalise your answer to find the optimal code when the frequencies are the first n Fibonacci numbers?
Q. 5 a. Consider the problem of "Making Change". Coins available are:

- dollars ( 100 cents)
- quarters ( 25 cents)
- dimes (10 cents)
- nickels (5 cents)
- pennies (1 cent)

Design an algorithm using greedy approach to make a change of a given amount using the smallest possible number of coins.
b. Write a program to merge two arrays in sorted order, so that if an integer is in both the arrays, it gets added into the final array only once.
Q. 6 a. How can the output of the Floyd-Warshall algorithm be used to detect the presence of a negative-weight cycle?
b. Write down the algorithm for counting sort. Illustrate the operation of your algorithm on the array $\mathrm{A}=(6,0,2,0,1,3,4,6,1,3,2)$
Q. 7 a. Define the set of NP complete languages. Prove that travelling salesman problem is NP complete.
b. Write and explain Knuth-Morris-Pratt Algorithm and discuss its computational complexity.

