\qquad

ALCCS

Time: 3 Hours
FEBRUARY 2014
Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE:

- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.
Q. 1 a. How many different 2-digit numbers can be made from the digits 0 to 9
(i) When repetition is allowed?
(ii) When repetition is not allowed?
b. Let R be an equivalence relation on the set $\mathrm{A}=\{4,5,6,7\}$ defined by $\mathrm{R}=\{(4,4)$, $(5,5),(6,6),(7,7),(4,6),(6,4)\}$. Determine its equivalence classes.
c. What is a complete bipartite graph? Draw the complete bipartite graph $\mathrm{K}_{1,5}$.
d. Prove that the argument $\mathrm{p} \rightarrow \mathrm{q}, \mathrm{q} \rightarrow \mathrm{r}, \mathrm{r} \rightarrow \mathrm{s}, \sim \mathrm{s}, \mathrm{pVt}$ is valid without using truth table.
e. Simplify the logical expression $\bar{X} \bar{Y}+\bar{X} Z+Y Z+\bar{Y} Z \bar{W}$
f. State and prove the Euler formula to test the planarity of the graph.
g. What kind of strings is not accepted by the following automaton? Explain how. $\mathbf{(7 \times 4)}$

Q. 2 a. Write the negation of each of the following in good English sentence.
(i) Jack did not eat fat, but he did eat broccoli
(ii) The weather is bad and I will not go to work.
(iii) Mary lost her lamb or the wolf ate the lamb.
(iv) I will not win the game or I will not enter the contest.
b. Prove that ${ }^{n+1} C_{r}={ }^{n} C_{r-1}+{ }^{n} C_{r}$
Q. 3 a. On a set $S=\{1,2,3,4,5\}$, find the equivalence relation on S, which generate the partition $\{\{1,2\},\{3\},\{4,5\}\}$. Draw the graph of the relation.
\qquad

Code: CT22

b. How many different sub-committees can be formed each containing three women from an available set of 20 women and four men from an available set of 30 men? (9)
Q. 4 a. State and prove the condition to find out if a given graph is an Euler graph.
b. Define Boolean algebra. Prove that the power set of any set forma a Boolean algebra.
Q. 5 a. What is a Hasse diagram? Draw the Hasse diagrams of the following sets under the partial ordering relation "divides" and indicate those which are totally ordered.
(i) $\{2,6,24\}$
(ii) $\{1,2,3,6,12\}$
(iii) $\{3,9,27,54\}$
b. Construct the finite automaton for the state transition table given below.

Q. 6 a. Prove that if (A, \leq) has a least element, then (A, \leq) has a unique least element.
b. Explain the ringsum, fusion and deletion operations on graphs giving suitable examples.
Q. 7 a. Write the Preorder, Inorder and Postorder tree traversal algorithm.
b. Write down the Warshall's algorithm for the connectivity amongst the vertices of the graph.

