ROLL NO.

Code: CT22

Subject: DISCRETE MATHEMATICAL STRUCTURES

ALCCS

Time: 3 Hours

FEBRUARY 2014

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE:

- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.
- Q.1 a. How many different 2-digit numbers can be made from the digits 0 to 9
 (i) When repetition is allowed?
 (ii) When repetition is not allowed?
 - b. Let R be an equivalence relation on the set A= $\{4, 5, 6, 7\}$ defined by R= $\{(4,4), (5,5), (6,6), (7,7), (4,6), (6,4)\}$. Determine its equivalence classes.
 - c. What is a complete bipartite graph? Draw the complete bipartite graph $K_{1,5}$.
 - d. Prove that the argument $p \rightarrow q$, $q \rightarrow r$, $r \rightarrow s$, $\sim s$, pVt is valid without using truth table.
 - e. Simplify the logical expression $\overline{XY} + \overline{XZ} + YZ + \overline{YZW}$
 - f. State and prove the Euler formula to test the planarity of the graph.
 - g. What kind of strings is not accepted by the following automaton? Explain how. (7×4)

- **Q.2** a. Write the negation of each of the following in good English sentence.
 - (i) Jack did not eat fat, but he did eat broccoli
 - (ii) The weather is bad and I will not go to work.
 - (iii) Mary lost her lamb or the wolf ate the lamb.
 - (iv) I will not win the game or I will not enter the contest. (9)

b. Prove that
$${}^{n+1}C_r = {}^{n}C_{r-1} + {}^{n}C_r$$
 (9)

Q.3 a. On a set $S = \{1,2,3,4,5\}$, find the equivalence relation on S, which generate the partition $\{\{1,2\},\{3\},\{4,5\}\}$. Draw the graph of the relation. (9)

ROLL NO.

Code: CT22 Subject: DISCRETE MATHEMATICAL STRUCTURES

- b. How many different sub-committees can be formed each containing three women from an available set of 20 women and four men from an available set of 30 men? (9)
- Q.4 a. State and prove the condition to find out if a given graph is an Euler graph. (9)
 - b. Define Boolean algebra. Prove that the power set of any set forma a Boolean algebra. (9)
- **Q.5** a. What is a Hasse diagram? Draw the Hasse diagrams of the following sets under the partial ordering relation "divides" and indicate those which are totally ordered.
 - (i) $\{2, 6, 24\}$
 - (ii) {1,2,3,6,12}
 - (iii) {3,9,27,54} (9)
 - b. Construct the finite automaton for the state transition table given below. (9)

	а	b
start s ₀	s ₀	s ₂
s_1	s ₀	s_1
\$ ₂ *	s_2	s_1

Q.6 a. Prove that if (A, \leq) has a least element, then (A, \leq) has a unique least element. (9)

- b. Explain the ringsum, fusion and deletion operations on graphs giving suitable examples. (9)
- Q.7 a. Write the Preorder, Inorder and Postorder tree traversal algorithm. (9)
 - b. Write down the Warshall's algorithm for the connectivity amongst the vertices of the graph. (9)