Subject: COMPUTER ARCHITECTURE

ALCCS

Time: 3 Hours

FEBRUARY 2014

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE:

- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.

Q.1 a. Explain the role of timing and control used in the design of computer organization.

- b. Compare isolated I/O and memory-mapped I/O.
- c. Explain delayed load and delayed branch in RISC pipeline operations.
- d. Explain memory interleaving. Give its respective advantages.
- e. Give any two examples for each of the following:
 - (i) Arithmetic microoperations
 - (ii) Logic microoperations
- f. Explain priority interrupt. Mention the role of polling in priority interrupt.
- g. Explain fixed-point data representation and floating-point data representation used digital systems. Give an example with illustration. (7×4)
- Q.2 a. Explain the metrics used in the performance of a computer. (5)
 - b. Draw the flow chart of first pass assembler and second pass assemble. Explain its working mechanism. (8)
 - c. Explain how stacks are used in subroutines. Give an example with illustration. (5)
- Q.3 a. What is the significance of the addressing modes? Explain the following addressing modes with an example: (6)
 - (i) Implied mode
 - (ii) Register Indirect Mode
 - (iii) Indirect Address Mode
 - b. Explain the organization of register stack and memory stack. (6)
 - c. Explain register transfer logic. Give an example to illustrate bus and memory transfer operations. (6)

ROLL NO. _

Q.4	a. Explain the working of microprogram sequencer. Draw the respective block diagram. (4+3		
	b. Explain horizontal microinstruction and vertical microinstruction. (6)		
	 c. Show how a 9-bit microoperation field in a microinstruction can be divided into subfields to specify 46 microoperations. How many microoperations can be specified in one microinstruction? 		
Q.5	a. Describe various types of auxiliary memory used in digital systems. (5)		
	b. Explain segmented-page mapping. (4)		
	 c. Write short notes for each for the following: (9) (i) Associative mapping (ii) Direct mapping (iii) Set-associative mapping 		
Q.6	a. Explain DMA based data transfer. Give the respective block diagram. (6)		
	b. Give at least six status conditions for the setting of individual bits in the statu register of an asynchronous communication interface.		

c. A virtual memory has a page size of 1K words. There are eight pages and four blocks. The associative memory page table contains the following entries: (6)

Page	Block
0	3
1	1
4	2
6	0

Make a list of all virtual addresses (in decimal) that will cause a page fault if used by the CPU.

Q.7	a. Explain the characteristics of CISC and RISC architectures.	(6)
-----	--	-----

- b. Explain the following:
 - (i) Pipeline processing
 - (ii) Vector processing
 - (iii) Array processors
 - c. Explain briefly Superscalar and Superpipelined architectures. (2×3)

(6)