Subject: DATA STRUCTURE THROUGH C

ALCCS

Time: 3 Hours

FEBRUARY 2014

Max. Marks: 100

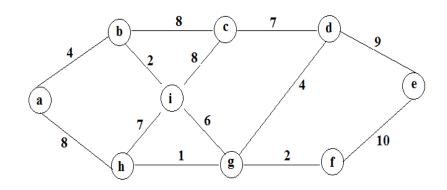
PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE:

- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.

- b. Compare time complexing of Quick and Merge sort.
- c. What is the bucket size, when the overlapping and collision occur at the same time?
- d. There are 8, 15, 13 and 14 nodes in 4 different trees. Which one of them can form a full binary tree?
- e. What pointer type is used to implement the heterogeneous linked list in C?
- f. Does the minimum spanning tree of a graph give the shortest distance between any 2 specified nodes? Explain.

	g.	What is the difference between B-tree and B+ tree?	(7×4)
Q.2	a.	Differentiate between NULL and VOID.	(4)
	b.	How can you dynamically allocate a multidimensional array? Write C code.	(6)
	c.	Write a C program that read and multiply two matrices. Also write a function print the matrix.	that (8)
Q.3	a.	Write a C program to create a copy of a linked list.	(8)
	b.	How a polynomial such as $6x^{170}+4x^{32}-2x+10$ can be represented by linked list an algorithm that reads such a polynomial.	? Write (5)
	c.	Explain how two polynomials can be added using linked lists.	(5)


Q.4 a. Explain Kruskal's algorithm for finding spanning tree of a graph. Find spanning tree of the following graph using this algorithm (8)

Q.1 a. Explain solution of Tower of Hanoi problem using recursion.

ROLL NO. _

Code: CT11

Subject: DATA STRUCTURE THROUGH C

- b. Write a function to compute the maximum depth in a tree? (10)
- **Q.5** a. Find the binary tree whose inorder and preorder traversals is given below:

inorder = g d h b e i a f j cpreorder = a b d g h e i c f j

(9)

- b. The keys 12, 18, 13, 2, 3, 23, 5 and 15 are inserted into an initially empty hash table of length 10 using open addressing with hash function h(k) = k mod 10 and linear probing. What is resultant hash table?
 (9)
- Q.6 a. Implement push, pop operation of stack using a linked list. For implementing stack, which one is more preferable using an array or using a linked list. (9)
 - b. Show the steps of Huffman's algorithm for the following set of frequencies f: 5 e: 9 c: 12 b: 13 d: 16 a: 45 (9)
- **Q.7** a. The transpose of a directed graph G = (V, E) is the graph $G^{T} = (V, E^{T})$, where $E^{T} = \{(v, u) \in V \times V : (u, v) \in E\}$. Thus, G^{T} is G with all its edges reversed. Describe efficient algorithms for computing G^{T} from G, for both the adjacency list and adjacency matrix representations of G. Analyze the running times of your algorithms. (9)
 - b. What do you mean by buddy system memory allocation? What are its drawbacks? (9)