Q.1 a. Define Support factor and Confidence factor with reference to Association rule mining.

b. Explain briefly ROLAP.

c. Explain the use of data mining in retail industry citing suitable examples.

d. Mention few advantages of using Bayesian Networks for data analysis.

e. Name few techniques to improve the efficiency of Apriori algorithm. Explain briefly one of these.

f. What are the requirements of cluster analysis? What are the different types of data used for cluster analysis?

g. Write short notes on multidimensional data model? Define data cube. (7×4)

Q.2 a. How is a data warehouse different from a database? How are they similar to each other? (9)

b. Discuss three data warehouse models- the enterprise warehouse, the data mart and the virtual warehouse. (9)

Q.3 a. Explain briefly star and snowflake schema. Also Point out the major difference between the two. Which is popular in the data warehouse design? (9)

b. Discuss Data extraction, Data transformation and Data loading with respect to Data warehouse. (9)

Q.4 a. Discuss typical OLAP operations in brief. (9)

b. Why most data warehouse systems support index structures? Discuss methods to index OLAP data. (9)
Q.5
a. What are the differences between the three main types of data warehouse usage: information processing, analytical processing and data mining? Discuss the motivation behind OLAM. (8)
b. Discuss basic algorithm for inducing a Decision tree from training samples. (5)
c. How is prediction different from classification? List criterion on the basis of which Classification and prediction methods can be compared and evaluated. (5)

Q.6
a. Discuss various issues in Data mining. (8)
b. How can efficiency of Apriori-based be improved? Describe briefly any of five variations of the Apriori algorithm. (10)

Q.7
a. What is Hierarchical method of clustering? Differentiate Agglomerative and Divisive Hierarchical Clustering? (6)
b. Write short note on any THREE of the following:
 (i) Social impacts of data mining
 (ii) Text mining
 (iii) Entropy-based discretization
 (iv) Min-max and z-score normalization (3 × 4)