ROLL NO.

Code: CT22

Subject: DISCRETE MATHEMATICAL STRUCTURES

ALCCS – NEW SCHEME

Time: 3 Hours

FEBRUARY 2013

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE:

- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.

Q.1 a. Show that
$$(\sim P \land (\sim Q \land R)) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$$

- b. If a = b then prove that ab' + a'b = 0.
- c. Draw the graph G, whose adjancy matrix is given as:

	v_1	v_2	V ₃	v_4	V ₅
	V ₁ [0	1	0	1	0
	$V_{2} 1$	0	0	1	0
A=	$v_3 = 0$	0	0	1	1
	$V_4 1$	1	1	0	1
	$V_5 0$	1	1	1	0

- d. Draw the connected regular graphs of degree 0, 1 and 2.
- e. What is tree? Define the m-way tree with suitable example.
- f. Which of the following graphs are trees:-

- g. State pigeon hole principle. Explain using a suitable example. (7×4)
- Q.2 a. Determine the number of integers between 1 and 250 that are divisible by any of the integers 2, 3, 5 and 7. (9)

ROLL NO.

Code: CT22 Subject: DISCRETE MATHEMATICAL STRUCTURES

b. Show that
$$1^2 - 2^2 + 3^2 + ... + (-1)^{n+1} n^2 = \frac{(-1)^{n+1} n^{(n+1)}}{2}$$
 (9)

Q.3 a. Write each of the following in disjunctive normal form
(i)
$$(x + y)(x' + y')$$

(ii) $x'z + xz'$
(iii) x
b. Let A = (2,3,4,5). Consider the relation B and C on a set A defined by
B = [(2,2), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5), (5,3)] and
C = [(2,3), (2,5), (3,4), (3,5), (4,2), (4,3), (4,5), (5,2), (5,5)]
then find
(i) B₀C
(ii) C₀B (9)
Q.4 a. Let A = {1,2,3} and consider the two relations
R = {(1,1), (1,2), (1,3), (2,2), (3,3)}
S = {(1,1), (1,2), (2,2), (3,2), (3,3)}
Then find R⁻¹, R \cup S and R \cap S by representing the matrices for R and S. (9)
b. Show that the operations of meet and join on a lattice are commutative, associative
and idempotent. (9)

- a. "A Boolean algebra is a complemented, distributive lattice" Justify the statement. (5) Q.5
 - b. Let $S = \{a, b, c\}$. Draw the diagram of $(P(S), \subseteq)$. (4)
 - c. Find the shortest path from V_1 to V_7 in the following weighted graph: (9)

a. What is planar graph? Check if the following graphs are planar graph. (9) Q.6

(9)

ROLL NO.

Code: CT22 Subject: DISCRETE MATHEMATICAL STRUCTURES

b. Determine the minimal spanning tree for the graph given below using Krushal's algorithm. (9)

Q.7 a. Describe the language L = L(M) accepted by DFA whose transition graph is shown in the figure: (9)

b. Design a DFA to accept the language $L = \{u : u \text{ has both even number of 0's and even number of 1's}\}$. Check whether this DFA accepts 110101. (9)