ROLL NO.

Code: CS42 Subject: OPERATIONS RESEARCH AND SYSTEM SIMULATION

ALCCS - OLD SCHEME

Time: 3 Hours

FEBRUARY 2013

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE:

- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.
- All calculations should be up to three places of decimals.
- **Q.1** a. Describe briefly the different Operations Research techniques.
 - b. What are the basic assumptions of linear programming problems?
 - c. Show that for a L.P.P., dual of the dual is the primal.
 - d. Explain North West corner rule for obtaining initial basic feasible solution for a transportation problem.
 - e. What are the applications of integer programming problems?
 - f. What is dynamic programming problem and also state Bellman's principle of optimality.
 - g. Explain the areas of application of Monte-Carlo simulation. Also state its limitations.

(7×4)

- Q.2 a. Explain different phases in an Operations Research study. Explain the role of computers in this field.
 (8)
 - b. A company makes two kinds of fertilizers, called Hi-phosphate and Lo-phosphate. Three basic raw materials are used in manufacturing these fertilizers in this manner:

Raw Material	Tons of raw r	naterial required to	Maximum amount of raw		
	manufacture of	one ton	material available per		
	Hi-	Lo-Phosphate	month		
	Phosphate				
1	2	1	1500		
2	1	1	1200		
3	1	0	500		
Selling price	\$15	\$10			
per ton of					
fertilizer					

Code: CS42 Subject: OPERATIONS RESEARCH AND SYSTEM SIMULATION

How much of each fertilizer should the company manufacture to maximize its gross monthly sales revenue? Formulate this as a linear programming problem and solve by simplex method. (10)

- Q.3 a. Give the mathematical formulation of the assignment problem and explain the method of solving a maximization assignment problem. (6)
 - b. Given the following transportation problem:

Warehouses	Α	B	С	D	Е	F	Availability
Х	1	2	1	4	5	2	600
Y	3	3	2	1	4	3	500
Z	4	2	5	9	6	2	750
Requirements	200	400	300	200	400	370	

Obtain the initial basic feasible solution using Vogel's approximation method and hence find optimum solution using MODI method. (12)

- **Q.4** a. Write short notes on the following:
 - (i) Economic interpretation of duality in linear programming.
 - (ii) Sensitivity Analysis for Linear Programming.
 - b. Solve the following problem using dynamic programming approach. A 4-ton vessel can be loaded with one or more of three items. The following table gives the unit weight, w_i , in tons and the unit revenue in thousands of dollors, r_i , for item i. How should the vessel be loaded to maximize the total return? (10)

Item i	Wi	ri
1	2	31
2	3	47
3	1	14

- **Q.5** a. Explain the Revised Simplex Method for solving LPP.
 - b. Using Branch and Bound algorithm, solve the following integer linear programming problem:

Maximize:
$$Z = 7x_1 + 9x_2$$

Subject to $-x_1 + 3x_2 \le 6$
 $7x_1 + x_2 \le 35$
 $x_2 \le 7$
 $x_1, x_2 \ge 0$ and are integers. (12)

(6)

(8)

Subject: OPERATIONS RESEARCH AND SYSTEM SIMULATION Code: CS42

- a. What are the features to be considered while building a simulation model? Explain Q.6 basic steps needed to make a simulation study. (12)
 - b. Discuss the Acceptance-Rejection Method for the generation of pseudo-random numbers. (6)
- a. Justify the use of simulation technique in queuing systems. Also, describe the **Q.7** simulation study of a single-server queue system. (8)
 - b. Write short note on the following: (i) Box-Muller Transformation for generating a sample from standardized normal distribution. (10)
 - (ii) Discrete-system simulation languages.