ROLL NO. _

Code: CT76

Subject: MICROELECTRONICS AND VLSI DESIGN

ALCCS – NEW SCHEME

Time: 3 Hours

AUGUST 2013

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE:

- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.
- **Q.1** a. Write the advantages of monolithic integration of a large number of functions on a single chip usually provides.
 - b. Compare CMOS with BJT.
 - c. Explain the purpose of SiO_2 layer formation in MOS transistor and list the different techniques of SiO_2 layer formation.
 - d. What are Photo-resists? What are its types and Give examples of each?
 - e. What is Channel-length modulation? Why latch-up problem occurs in MOS device?
 - f. Define Entity Declaration. Explain different port-modes used in VHDL.

	g.	Compare Mealy and Moore FSM's.	(7×4)
Q.2	a.	How a substrate is prepared for fabricating on IC? Explain CZ process.	(10)
	b.	Define Diffusion Process. Explain Fick's first diffusion law.	(8)
Q.3	a.	Calculate the expression for depletion width of an MOS transistor subjecte external bias.	ed for an (10)
	b.	Explain the effect of V_{SB} voltage on MOS transistor threshold voltage.	(8)
Q.4	a.	Explain CMOS inverter and give its DC characteristics.	(10)
	b.	Give a logic circuit example in which stuck-at-'1' fault and stuck-at-'0' distinguishable.	fault are (8)
Q.5	a.	Design a Full CMOS XOR gate and explain its working operation.	(8)
	b.	Explain Transmission Gate working operations in different regions.	(10)

Code: CT76 Subject: MICROELECTRONICS AND VLSI DESIGN

Q.6	a.	Classify Semiconductor Memories according to the type of data storage and t data access mechanisms.	ype of (10)
	b.	Draw and explain the behavioral model of positive edge triggered T flip-flop.	(8)
Q.7	a.	Explain the capacitances associated with MOSFET.	(10)
	b	. Write short notes on	(8)
		(i) Scaling of MOS Transistor dimension.	

(ii) Trends in VLSI Technology.