Q.1

a. Show that
\[\sim (P \land Q) \rightarrow (\sim P \lor (\sim P \lor Q)) \iff (\sim P \lor Q) \]

b. Write an equivalent formula for \(P \land (Q \iff R) \lor (R \iff P) \) which does not contain the biconditional.

c. Let \(R = \{ (1, 2), (3, 4), (2, 2) \} \) and \(S = \{ (4, 2), (2, 5), (3, 1), (1, 3) \} \). Find \(R \circ S, S \circ R, R \circ (S \circ R), (R \circ S) \circ R \).

d. Show that the maximum number of edges in a simple graph with \(n \) vertices is \(n(n - 1)/2 \).

e. Show that the Lattice given by the diagrams below are not distributive.

f. Obtain the values of the Boolean forms
\[x_1 \ast (x_1 \oplus x_2), x_1 \ast x_2 \] and \(x_1 \oplus (x_1 \ast x_2) \) over the ordered pairs of the two element Boolean algebra.

g. Consider the multigraphs \(G \) in figures below
 (i) Which of them are connected? If a graph is not connected, find its connected components.
 (ii) Which are cycle free (without cycles)? \(7 \times 4 \)
Q.2
 a. Count the number V of vertices, the number E of edges and the number R of regions of each map in figures below and verify Euler’s formula. Also find degree of the outside region. (6)

 ![Maps](image)

 (i) (ii) (iii)

 b. Which of the graphs G in figure below have a Hamiltonian circuit? If not, why not? (6)

 ![Graphs](image)

 c. Convert the infix expression\[(a + b + c + d) \times (e + f/d) \] into reverse polish expression. (6)

Q.3
 a. Consider the three trees T_1, T_2, T_3. Identify those which represent the same:
 (i) rooted tree
 (ii) ordered rooted tree
 (iii) binary tree (9)

 ![Trees](image)
b. Consider the algebraic expression \(E = (2x + y)(5a - b)^3 \)
 (i) Draw the tree \(T \) which corresponds to expression \(E \).
 (ii) Find the scope of the exponential operator; that is, find the subtree rooted at the exponential operator.
 (iii) Find the preorder of \(T \).

Q.4

a. For a 3-ary tree with \(n \) internal nodes, prove that \(t = 2(n-1) + 3 \) where \(t \) is terminal nodes.

b. Suppose the following list of letters is inserted into an empty binary search tree
 (i) Find the final tree \(T \).
 (ii) Find the inorder traversal of \(T \).

Q.5

a. Describe the word \(w \) in the language \(L \) accepted by automation \(M \) in Figure below:

b. Let \(A = \{0, 1\} \), construct an finite automation \(M \) such that \(L(M) \) will consist of
 (i) words without substring ‘000’.
 (ii) words which starts and end with same double letter.

Q.6

a. Let \(A = \{1, 2, 3, 4, 5\} \) be ordered by
 Hasse diagram (\(H \)). Insert the correct symbol, \(<, >, \) or \(\parallel \) (not comparable),
 between each pair of elements:
 (i) \(1 \ldots 5 \)
 (ii) \(2 \ldots 3 \)
 (iii) \(4 \ldots 1 \)
 (iv) \(3 \ldots 4 \)

b. Consider the ordered set \(A \) in the above Hasse diagram
 (i) Find all minimal and maximal elements of \(A \).
 (ii) Does \(A \) have a first element or a last element?

Q.7

Among integers 1 to 1000
 (i) How many of them are not divisible by 3 nor by 5 nor by 7?
 (ii) How many are not divisible by 5 or 7 but divisible by 3?