ROLL NO.

Code: CS41

Subject: NUMERICAL & SCIENTIFIC COMPUTING

ALCCS – OLD SCHEME

Time: 3 Hours

AUGUST 2012

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE:

- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.
- All calculations should be up to three places of decimals.
- **Q.1** a. What are the different types of errors in numerical computations?
 - b. Discuss convergence of Iteration method.
 - c. Find the relative error in calculation of $\frac{7.342}{0.241}$. Numbers are correct to three decimal places. Determine the smallest interval in which true result lies.
 - d. Write the algorithm for Regula falsi method.
 - e. Using Newton's divided difference formula, find a polynomial function satisfying the following data:

x:-4-1025f(x):124533591335Hence find f(1).

f. Use the two point Gauss – Legendre quadrature formula to evaluate $\int_{5}^{12} \frac{1}{x} dx$.

g. Use trapezoidal rule to evaluate $\int_{0}^{1} x^{3} dx$ considering five sub-intervals. (7×4)

- Q.2 a. Use Regula-Falsi method to find the real root of the equation $x^3 x^2 2 = 0$ correct to three decimal places. (9)
 - b. Use Newton-Raphson method to find all roots of the equation $\cos x x^2 = x$ correct to four decimal places. (9)

ROLL NO.

Code: CS41 Subject: NUMERICAL & SCIENTIFIC COMPUTING

Q.3 a. Solve the equations

x + y = z = 6 $3x + (3 + \epsilon)y + 4z = 20$ 2x + y + 3z = 13using Gauss elimination method, where ϵ is small such that $1 \pm \epsilon^2 \approx 1$. (9)

b. Apply Gauss-Seidel iteration method to solve the following equations: (9)

10x - 2y - z - u = 3-2x + 10y - z - u = 15 -x - y + 10z - 2 u = 27 -x - y - 2z + 10u = -9

Q.4 a. Using the Jacobi method, find all the eigenvalues and the corresponding eigenvectors of the matrix:-

$$\mathbf{A} = \begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix}$$
(9)

b. Given the matrix A = I + L + U where

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix}$$

L and U are strictly lower and upper triangular matrices respectively. Decide whether (i) Jacobi

(ii) Gauss-Seidel

methods converge to the solution of Ax = b.

Q.5 a. Using Lagrange's interpolation formula, find y(10) from the following table:

x 5 6 9 11 y 12 13 14 16	e sing Bugrung	e s meerponaero	n tormana, ima	<i>f(10)</i> nom m	iono ning tue
y 12 13 14 16	Х	5	6	9	11
	у	12	13	14	16

b. Apply Hermite's interpolation formula to find a cubic polynomial which meets the following specifications: (9)

yi	y _i ,
0	0
1	1
	y _i 0 1

Q.6 a. The speed, v meters per second, of a car, t seconds after it starts, is shown in the following table:

t	0	12	24	36	48	60	72	84	96	108	120
V	0	3.60	10.08	18.90	21.60	18.54	10.26	5.40	4.50	5.40	9.00
Using Simpson's rule, find the distance travelled by the car in 2 minutes.									(9)		

CS41 / AUGUST - 2012

(9)

(9)

ROLL NO.

Code: CS41 Subject: NUMERICAL & SCIENTIFIC COMPUTING

b. A differentiation rule of the form

 $f(x_0) = \alpha_0 f_0 + \alpha_1 f_1 + \alpha_2 f_2$

Where $x_k = x_0 + kh$ is given. Find the values of α_{0} , α_1 and α_2 so that the rule is exact for $f \in P_2$. Find the error term. (9)

- Q.7 a. Solve the equation $\frac{dy}{dx} = 1 y$ with the initial condition x = 0, y = 0 using Euler's algorithm and tabulate the solutions at x = 0.1, 0.2, 0.3. (9)
 - b. Use Taylor's series method to solve

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x + y \, ; \, y(1) = 0$$

numerically up to x = 1.2 with h = 0.1. Compare the final result with the value of explicit solution. (9)