**CT71** 

# Q.1 a. List three reasons why the production system offers an important "architecture" for computer based problem solving.

**Answer:** Production system offers an important "architecture" because of its simplicity, modifiability and flexibility in applying problem solving knowledge.

# b. Does admissibility imply monotonicity of a heuristic? If not, can you describe when admissibility would imply monotonicity?

**Answer:** Admissibility implies monotonicity only when the heuristic value of the goal is zero and any state in the search space may be used as a goal state, without revising the heuristic in the A\* algorithm. An example is the heuristic of "tiles out of place" in the 8-puzzle that may be applied equally well to any state in the search space.

## c. Why is the most general unifier important?

**Answer:** Unification specifies conditions under which two (or more) predicate calculus expressions may be said to be equivalent. This allows use of inference rules, such as resolution.

## d. Draw semantic network of the following sentence: Yesterday Kavita flew from New Delhi to Bangalore.

Answer:



e. Consider the evidence  $e_1 = single$ ,  $e_2 = high income$ ,  $e_3 = young$ , supporting the hypothesis  $h_1 = high-risk$  investor or  $h_2 = low-risk$  investor, which are mutually exclusive and exhaustive. Assume that the domain expert estimates the posterior probabilities as:

 $\begin{array}{l} P(h_1)=0.3,\ P(h_2)=0.7,\ P(e_1/h_1)=0.6,\ P(e_1/h_2)=0.3,\ P(e_2/h_1)=0.2,\ P(e_2/h_2)=0.8, \\ P(e_3/h_1)=0.5,\ P(e_3/h_2)=0.2 \end{array}$ 

Prove that if e<sub>1</sub> and e<sub>3</sub> are present then the investor is high-risk investor.

Answer:  $P(h_1 / e_1 \wedge e_3) = 0.618$  and  $P(h_2 / e_1 \wedge e_3) = 0.318$ . Hence investor is high-risk investor

## f. Explain the significant aspects of the momentum to the training by gradient decent approach.

- Answer: The significant aspects of momentum are:
  - a. In training formulations involving momentum, when  $\frac{\partial E}{\partial w_{ji}}$  has the same algebraic sign on consecutive iterations,  $\Delta w_{ji}$  grows in magnitude and so  $w_{ji}$  is modified by a large amount. Thus, momentum tends to accelerate descent in steady downhill directions
  - b. In training formulations involving momentum, when  $\frac{\partial E}{\partial w_{ji}}$  has alternating algebraic signs on consecutive iterations,  $\Delta w_{ji}$  becomes smaller and so the weight adjustment is small. Thus, momentum has a stabilizing effect on learning.

## Q.2 a. Explain the effect of underestimation and overestimation of the heuristic function in the A\* algorithm.

Answer: If  $h^*$  underestimates h, then there may be a wastage of some effort.



First explore B, then E then F and after this it will explore C so exploring B, E and F is wastage of effort due to underestimate of h.



If  $h^*$  overestimates h, then there may be a wastage of some effort.

First explore B, then E then F then we get G. Suppose there is a direct path from D to G then that path would have been cheaper. So there is wastage of efforts due to overestimation of *h*.

## b. Consider the following knowledge base:

 $\forall x \ \forall y \ cat(x) \land fish(y) \Rightarrow likes\_to\_eat(x, y)$  $\forall x \ calico(x) \Rightarrow cat(x)$  $\forall x \ tuna(x) \Rightarrow fish(x)$ tuna(Charlie)tuna(Herb)calico(Puss)

- (a) Convert these wff's into Horn clauses.
- (b) Convert the Horn clauses into a Prolog program.
- (c) Write a PROLOG query corresponding to the question, "What does Puss like to eat?" and show how it will be answered by your program.

### Answer:

(a) Horn Clauses:

 $\neg \operatorname{cat}(x) \lor \neg \operatorname{fish}(y) \lor \operatorname{likes\_to\_eat}(x, y)$  $\neg \operatorname{calico}(x) \lor \operatorname{cat}(x)$  $\neg \operatorname{tuna}(x) \lor \operatorname{fish}(x)$ tuna(Charlie) tuna(Herb) calico(Puss)

```
(b) PROLOG program:
```

likes\_to\_eat(X, Y) :- cat(X), fish(Y). cat(X) :- calico(X). fish(X) :- tuna(X). tuna(Charlie). tuna(herb). calico(puss).

(c) Query: ?- likes\_to\_eat(puss, X). Answer: Charlie

### Q.3 a. Name the various Heuristics used for planning using Constraint Posting.

Answer: Heuristics used for planning using Constraint Posting:

- (i) Step Addition Creating new step to come before another in a final plan.
- (ii) Promotion Constraining one step to come before another in a final plan.
- (iii) Declobbering Placing one (possibly new) step  $s_2$  between two old steps  $s_1$  and  $s_3$ , such that  $s_2$  reasserts some precondition of  $s_3$  that was negated (or clobbered) by  $s_1$ .

- (iv) Simple Establishment Assigning a value to a variable, in order to ensure the preconditions of some step.
- (v) Separation Preventing the assignment of certain values to a variable.

## b. Under what conditions $\alpha - \beta$ pruning will prove to be worse?

Answer: The effectiveness of the  $\alpha$ - $\beta$  procedure depends greatly on the order in which paths are examined. If the worst paths are examined first, then no cutoff at all will occur.

## c. Show the conceptual dependency representation of the following sentence John wanted Mary to go to the store.



### Q.4 a. Discuss the architecture of Expert System and explain its components.

Answer: Components of Expert System:

- (i) Knowledge Acquisition Module
- (ii) Knowledge Base
- (iii)Inference Engine
- (iv)I/O interface
- (v) Explanation Module
- b. Consider as frame of discernment the set  $H = \{flu, cold, pneumonia\}$ . Write its Powerset. Given the evidence "fever" an expert assigns these mass probabilities  $m_1(\{flu, pneumonia\}) = 0.8, m_1(H) = 0.2$

Given as a second symptom, "shivering" the expert may assign the mass probabilities

 $m_2(\{\text{pneumonia, cold}\}) = 0.6, m_2(\text{H}) = 0.4$ 

Compute the certainty intervals of all the hypotheses flu, cold and pneumonia.

#### Answer:

|                        | $m_1 \{FL, PN\} = 0.8$ | $m_1$ {(H) = 0.2    |
|------------------------|------------------------|---------------------|
| $m_2 \{PN, CL\} = 0.6$ | $\{PN\} = 0.48$        | $\{PN, CL\} = 0.12$ |
| $m_2$ (H) = 0.4        | $\{FL, PN\} = 0.32$    | (H) = 0.08          |

Normalizing factor N = 1 Bel({FL}) = 0, Bel({PN}) = 0.48, Bel({CL}) = 0 Bel({PN,CL}) = .48+.12 = 0.6, Bel({FL, PN}) = .32+.48 = 0.8, Bel(H) = 1 Pl({FL}) = 1 - 0.6 = 0.4, Pl({PN}) = 1 - 0 = 1, Pl({CL}) = 1 - .8 = 0.2 Intervals for {FL} = [0, 0.4] {PN} = [0.48, 1] {CL} = [0, 0.2]

### Q.5 a. Given: Premise P: *x* is little; a relation R: *x* and *y* are approximately equal.

$$\mu_{\tilde{p}}(\mathbf{x}) = [1/1, 2/.4, 3/.2, 4/0] \text{ and } \mu_{R}(\mathbf{x}, \mathbf{y}) = \begin{bmatrix} 1 & .5 & .1 & 0 \\ .4 & 1 & .6 & 0 \\ 0 & .6 & 1 & .4 \\ .1 & .1 & .5 & 1 \end{bmatrix}$$

Prove that y is more or less little.

#### Answer:

 $\mu_{\text{For}}(y) = [1/1, 2/.5, 3/.4, 4/.2]$  i.e. y is more or less little.

#### b. For a 5-unit feedback network the weight matrix is given by

|     | 0  | 1  | -1 | -1 | -3]                                                                               |
|-----|----|----|----|----|-----------------------------------------------------------------------------------|
|     | 1  | 0  | 1  | 1  | -1                                                                                |
| w = | -1 | 1  | 0  | 3  | 1                                                                                 |
|     | -1 | 1  | 0  | 3  | 1                                                                                 |
|     | -3 | -1 | 1  | 1  | $   \begin{bmatrix}     -3 \\     -1 \\     1 \\     1 \\     0   \end{bmatrix} $ |

Assuming that the bias and input of each of the units to be zero, compute the Hopfield energy at the following states.

 $s = [-1 \ 1 \ 1 \ 1 \ 1]^{T}$  and  $s = [-1 \ -1 \ 1 \ -1 \ -1]^{T}$ 

#### Answer:

Given  $\theta_i = 0$ , &  $w_{ii} = 0$ ,  $\forall i = 1, 2, ..., 5$ . Therefore  $V = -(1/2) \sum w_{ij} s_i s_j = -(w_{12}s_1 s_2 + w_{13}s_1 s_3 + w_{14}s_1 s_4 + w_{15}s_1 s_5 + w_{23}s_2 s_3 + w_{24}s_2 s_4 + w_{25}s_2 s_5 + w_{34}s_3 s_4 + w_{35}s_3 s_5 + w_{45}s_4 s_5)$   $V(-1 \ 1 \ 1 \ 1 \ 1) = -(-1+1+1+3+1+1-1+3+1+1) = -10$ Similarly,  $V(-1 \ -1 \ 1 \ -1 \ -1) = 6$ .

Q.6 b. Design a perceptron for AND function of two inputs. Define appropriate weights and bias in the range [-1, 1] and use step activation function where if weighted sum is strictly greater than 0 then output 1 and if it is strictly less than 0 then output 0.

**Answer:** Let x be an input vector  $(x_1, x_2, ..., x_n)$ . The weighted sum function g(x) and the output function o(x) are

$$g(\mathbf{x}) = \sum_{i=0}^{n} w_i x_i$$
  

$$o(\mathbf{x}) = \begin{cases} 1 & \text{if } g(\mathbf{x}) > 0\\ 0 & \text{if } g(\mathbf{x}) < 0 \end{cases}$$

and the second

In this problem we have 2 inputs i.e.  $x_1$  and  $x_2$ .

$$g(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2$$

AND truth table

| $x_1$ | $x_2$ | output |
|-------|-------|--------|
| 0     | 0     | 0      |
| 0     | 1     | 0      |
| 1     | 0     | 0      |
| 1     | 1     | 1      |

Therefore

 $w_0 < 0$   $w_0 + w_1 < 0$   $w_0 + w_2 < 0$  $w_0 + w_1 + w_2 > 0$ 

Possible values of  $w_0$ ,  $w_1$ ,  $w_2$  may be -0.5, 0.4, 0.3.

## **Text Books**

- 1. Elaine Rich and Kevin Knight, "Artificial Intelligence", Tata McGraw-Hills, Reprint 2003.
- 2. S Russell and Peter Norvig, Artificial Intelligence A Modern Approach, Pearson Education, Reprint 2003.
- 3. Saroj Kaushik, "Logic and Prolog Programming", New Age International Ltd, Publisher, 2007.