
CT31 OPERATING SYSTEM ALCCS-AUG 2014

© IETE 1

Q1 (a) List the major activities of an Operating System with respect to process
management and memory management?

Answer: Major activities of an operating system in respect to Process management are as
follows:

• The creation and deletion of both user and system processes.
• The suspension and resumption of processes.
• The provision of mechanisms for process synchronization.
• The provision of mechanisms for process communication.
• The provision of mechanisms for deadlock handling.

(b) Discuss the differences between user level threads and kernel level threads.

Answer: Difference between User Level threads and Kernel Level threads are as follows:

• User threads are supported above the kernel and are implemented by a thread
library at the user level. Whereas, kernel threads are supported directly by the
operating system.

• For user threads, the thread library provides support for thread creation,
scheduling and management in user space with no support from the kernel, as the
kernel is unaware of user-level threads. In case of kernel threads, the kernel
performs thread creation, scheduling and management in kernel space.

• As there is no need of kernel intervention, user-level threads are generally fast to
create and manage. As thread management is done by the operating system,
kernel threads are generally slower to create and manage that is user threads.

• If the kernel is single-threaded, then any user-level thread performing blocking
system call, will cause the entire process to block, even if other threads are
available to run within the application. However, since the kernel is managing the
kernel threads, if a thread performs a blocking system call, the kernel can
schedule another thread in the application for execution.

• User-thread libraries include POSIX P threads, Mach C-threads and Solaris 2 UI-
threads. Some of the cotemporary operating systems that support kernel threads
are Windows NT, Windows 2000, Solaris 2, BeOS and Tru64 UNIX (formerly
Digital UNIX).

(c) How process synchronization is achieved in Pthreads?

Answer:
The Pthreads API provides mutex locks, condition variables, and read-write locks for
thread synchronization. This API is available for programmers and is not part of any
particular kernel. Mutex locks represent the fundamental synchronization technique used
with Pthreads. A mutex lock is used to protect critical sections of code—that is, a thread
acquires the lock before entering
a critical section and releases it upon exiting the critical section. Many systems that
implement Pthreads also provide semaphores, although they are not part of the Pthreads
standard and instead belong to the POSIX SEM extension. Other extensions to the

CT31 OPERATING SYSTEM ALCCS-AUG 2014

© IETE 2

Pthreads API include spinlocks, although not all extensions are considered portable from
one implementation to another.

(d) When can the OS bind instructions and data to memory?

Answer:
Classically, the binding of instructions and data to memory addresses can be done at any
step along the way:
• Compile time. If you know at compile time where the process will reside in memory,
then absolute code can be generated. For example, if you know that a user process will
reside starting at location R, then the generated compiler code will start at that location
and extend up from there. If, at some later time, the starting location changes, then it will
be necessary to recompile this code. The MS-DOS .COM-format programs are bound at
compile time.
• Load time. If it is not known at compile time where the process will reside in memory,
then the compiler must generate relocatable code. In this case, final binding is delayed
until load time. If the starting address changes, we need only reload the user code to
incorporate this changed value.
• Execution time. If the process can be moved during its execution from one memory
segment to another, then binding must be delayed until run time. Special hardware must
be available for this scheme to work. Most general-purpose operating systems use this
method.

(e) What are the different security measures to be taken to protect a computer
system?

Answer:
To protect a system, we must take security measures at four levels:
1. Physical. The site or sites containing the computer systems must be physically secured
against armed or surreptitious entry by intruders. Both the machine rooms and the
terminals or workstations that have access to the machines must be secured.
2. Human. Authorizing users must be done carefully to assure that only appropriate users
have access to the system. Even authorized users, however, may be "encouraged" to let
others use their access (in exchange for a bribe, for example). They may also be tricked
into allowing access via social engineering. One type of social-engineering attack is
phishing. Here, a legitimate-looking e-mail or web page misleads a user into entering
confidential information. Another technique is dumpster diving, a general term for
attempting to gather information in order to gain unauthorized access to the computer (by
looking through trash, finding phone books, or finding notes containing passwords, for
example). These security problems are management and personnel issues, not problems
pertaining to operating systems.
3. Operating system. The system must protect itself from accidental or purposeful
security breaches. A runaway process could constitute an accidental denial-of-service
attack. A query to a service could reveal passwords. A stack overflow could allow the
launching of an unauthorized process. The list of possible breaches is almost endless.

CT31 OPERATING SYSTEM ALCCS-AUG 2014

© IETE 3

4. Network. Much computer data in modern systems travels over private leased lines,
shared lines like the Internet, wireless connections, or dial-up lines. Intercepting these
data could be just as harmful as breaking into a computer; and interruption of
communications could constitute a remote denial-of-service attack, diminishing users' use
of and trust in the system.

(f) What are the reasons for using Process Migration in Distributed Operating
Systems?

Answer:
A logical extension of computation migration is process migration. When a process is
submitted for execution, it is not always executed at the site at which it is initiated. The
entire process, or parts of it, may be executed at different sites. This scheme may be used
for several reasons:
• Load balancing. The processes (or subprocesses) may be distributed across the
network to even the workload.
• Computation speedup. If a single process can be divided into a number of
subprocesses that can run concurrently on different sites, then the total process
turnaround time can be reduced.
• Hardware preference. The process may have characteristics that make it more suitable
for execution on some specialized processor (such as matrix inversion on an array
processor, rather than on a microprocessor).
• Software preference. The process may require software that is available at only a
particular site, and either the software cannot be moved, or it is less expensive to move
the process.
• Data access. Just as in computation migration, if the data being used in the computation
are numerous, it may be more efficient to have a process run remotely than to transfer all
the data.

(g) Write the advantages and disadvantages of Single-Coordinator approach for
Locking Protocol?

Answer:
The Single-Coordinator approach for locking protocol has the following advantages:
• Simple implementation. This scheme requires two messages for handling lock requests
and one message for handling unlock requests.
• Simple deadlock handling. Since all lock and unlock requests are made at one site, the
deadlock-handling algorithms can be applied directly to this environment.

The disadvantages of the Single-Coordinator approach include the following:
• Bottleneck. The site S, becomes a bottleneck, since all requests must be processed
there.
• Vulnerability. If the site S, fails, the concurrency controller is lost. Either processing
must stop or a recovery scheme must be used.

CT31 OPERATING SYSTEM ALCCS-AUG 2014

© IETE 4

Q2 (a) What is a Process? Briefly discuss different process states?

Answer:
A process or task is a portion of a program in some stage of execution. A program can
consist of several processes, each working on their own or as a unit, perhaps
communicating with each other. Each process that runs in an operating system is assigned
a process control block that holds information about the process, such as a unique process
ID (a number used to identify the process), the saved state of the process, the process
priority and where it is located in memory.
A process in a computer system may be in one of the possible state as follows:

• Running: A CPU is currently allocated to the process and the process is in
execution.

• Blocked: The process is waiting for a request to be satisfied, or an event to occur.
Such a process cannot execute even if a CPU is available.

• Ready: The process is not running, however it can execute if a CPU is allocated to
it, means the process is not blocked.

• Terminated: The process has finished its execution.
A state transition is caused by the occurrence of some event in the system. When a
process in the running state makes an I/O request, it has to enter blocked state
awaiting completion of the I/O. When the I/O completes, the process state changes
from blocked to ready. Similar state changes occur when a process makes some
request, which cannot be satisfied by OS straightway. The process state changes to
blocked until the request is satisfied, when its state changes to ready once again. A
ready process becomes running when the CPU allocated to it. The fundamental state
transition is shown in figure below.

 Terminated

 Running

 Ready Blocked

CT31 OPERATING SYSTEM ALCCS-AUG 2014

© IETE 5

(b) What are System programs? How are they divided into different categories?

Answer:
System programs provide a convenient environment for program development and
execution. Some of them are simply user interfaces to system calls; others are
considerably more complex.
They can be divided into these categories:

• File management. These programs create, delete, copy, rename, print, dump, list,
and generally manipulate files and directories.

• Status information. Some programs simply ask the system for the date, time,
amount of available memory or disk space, number of users, or similar status
information. Others are more complex, providing detailed performance, logging,
and debugging information. Typically, these programs format and print the output
to the terminal or other output devices or files or display it in a window of the
GUI. Some systems also support a registry, which is used to store and retrieve
configuration information.

• File modification. Several text editors may be available to create and modify the
content of files stored on disk or other storage devices. There may also be special
commands to search contents of files or perform transformations of the text.

• Programming-language support. Compilers, assemblers, debuggers and
interpreters for common programming languages (such as C, C++, Java, Visual
Basic, and PERL) are often provided to the user with the operating system.

• Program loading and execution. Once a program is assembled or compiled, it
must be loaded into memory to be executed. The system may provide absolute
loaders, relocatable loaders, linkage editors, and overlay loaders. Debugging
systems for either higher-level languages or machine language are needed as well.

• Communications. These programs provide the mechanism for creating virtual
connections among processes, users, and computer systems. They allow users to
send messages to one another's screens, to browse web pages, to send electronic-
mail messages, to log in remotely, or to transfer files from one machine to
another.

(c) Define Deadlock? Discuss the four necessary conditions of Deadlock prevention?

Answer:
Deadlock is a situation, in which processes never finish executing and system resources
are tied up, preventing other jobs form starting. A process requests resources; if the
resources are not available at that time, the process enters a wait state. Waiting processes
may never again change state, because other waiting processes, thereby causing deadlock,
hold the resources they have requested.

The four necessary conditions for deadlocks to occur are mutual exclusion, hold and
wait, no preemption and circular wait. If any one of the above four conditions does not
hold, then deadlocks will not occur. Thus prevention of deadlock is possible by ensuring
that at least one of the four conditions cannot hold.

CT31 OPERATING SYSTEM ALCCS-AUG 2014

© IETE 6

• Mutual exclusion: Resources that can be shared are never involved in a deadlock
because such resources can always be granted simultaneously access by
processes. Hence processes requesting for such a sharable resource will never
have to wait. Examples of such resources include read-only files. Mutual
exclusion must therefore hold for non-sharable resources. But it is not always
possible to prevent deadlocks by denying mutual exclusion condition because
some resources are by nature non-sharable, for example printers.

• Hold and wait: To avoid hold and wait, the system must ensure that a process
that requests for a resource does not hold on to another. There can be two
approaches to this scheme:

o a process requests for and gets allocated all the resources it uses before
execution begins.

o a process can request for a resource only when it does not hold on to any
other.

Algorithms based on these approaches have poor resource utilization. This is
because resources get locked with processes much earlier than they are actually
used and hence not available for others to use as in the first approach. The second
approach seems to applicable only when there is assurance about reusability of
data and code on the released resources. The algorithms also suffer from
starvation since popular resources may never be freely available.

• No preemption: This condition states that resources allocated to processes cannot
be preempted. To ensure that this condition does not hold, resources could be
preempted. When a process requests for a resource, it is allocated the resource if it
is available. If it is not, than a check is made to see if the process holding the
wanted resource is also waiting for additional resources. If so the wanted resource
is preempted from the waiting process and allotted to the requesting process. If
both the above is not true that is the resource is neither available nor held by a
waiting process, then the requesting process waits. During its waiting period,
some of its resources could also be preempted in which case the process will be
restarted only when all the new and the preempted resources are allocated to it.
Another alternative approach could be as follows: If a process requests for a
resource which is not available immediately, then all other resources it currently
holds are preempted. The process restarts only when the new and the preempted
resources are allocated to it as in the previous case.
Resources can be preempted only if their current status can be saved so that
processes could be restarted later by restoring the previous states. Example, CPU
memory and main memory. But resources such as printers cannot be preempted,
as their states cannot be saved for restoration later.

• Circular wait: Resource types need to be ordered and processes requesting for
resources will do so in increasing order of enumeration. Each resource type is
mapped to a unique integer that allows resources to be compared and to find out
the precedence order for the resources. Thus F: R N is a 1:1 function that maps
resources to numbers. For example:
F (tape drive) = 1, F (disk drive) = 5, F (printer) = 10.
To ensure that deadlocks do not occur, each process can request for resources
only in increasing order of these numbers. A process to start with in the very first

CT31 OPERATING SYSTEM ALCCS-AUG 2014

© IETE 7

instance can request for any resource say Ri. There after it can request for a
resource Rj if and only if F(Rj) is greater than F(Ri). Alternately, if F(Rj) is less
than F(Ri), then Rj can be allocated to the process if and only if the process
releases Ri.
The mapping function F should be so defined that resources get numbers in the
usual order of usage.

Q3 (a) Consider the following set of processes, with the length of the CPU-burst time
given in milliseconds:

Process Burst time Priority
P1 10 3
P2 1 1
P3 2 3
P4 1 4
P5 5 2

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5 all at time
0.
(i) Draw four Gantt charts illustrating the execution of these processes using FCFS,
SJF, a nonpreemptive priority (a smaller number implies a higher priority), and RR
(quantum = 1) scheduling.
(ii) What is the turnaround time and waiting time of each process for each of the
scheduling algorithms in part (i)? Which of the schedules results in the minimal
average waiting time (over all processes)?

Answer:

(i) The four Gantt charts are

1 2 3 4 5 FCFS

1 2 3 4 5 1 3 5 1 5 1 5 1 5 1 RR

2 4 3 5 1 SJF

2 5 1 3 4 Priority

(ii) Turnaround time

Process FCFS RR SJF Priority
P1 10 19 19 16
P2 11 2 1 1
P3 13 7 4 18
P4 14 4 2 19
P5 19 14 9 6

CT31 OPERATING SYSTEM ALCCS-AUG 2014

© IETE 8

(iii)Waiting time (turnaround time minus burst time)

Process FCFS RR SJF Priority
P1 0 9 9 6
P2 10 1 0 0
P3 11 5 2 16
P4 13 3 1 18
P5 14 9 4 1

(iv) Shortest Job First

(b) What is Readers-Writers problem? Give a solution for Readers-Writers problem
using conditional critical regions

Answer:
Readers-writers problem: Let a data object (such as a file or record) is to be shared
among several concurrent processes. Readers are the processes that are interested in only
reading the content of shared data object. Writers are the processes that may want to
update (that is, to read and write) the shared data object. If two readers access the shared
data object simultaneously, no adverse effects will result. However if a writer and some
other process (either a reader or writer) access the shared object simultaneously, anomaly
may arise. To ensure that these difficulties do not arise, writers are required to have
exclusive access to the shared object. This synchronization problem is referred to as the
readers-writers problem.

Solution for readers-writers problem using conditional critical regions.
Conditional critical region is a high-level synchronization construct. We assume that a
process consists of some local data, and a sequential program that can operate on the
data. The local data can be accessed by only the sequential program that is encapsulated
within same process. One process cannot directly access the local data of another process.
Processes can, however, share global data.
Conditional critical region synchronization construct requires that a variable v of type T,
which is to be shared among many processes, be declared as

 v: shared T;
The variable v can be accessed only inside a region statement of the following form:

region v when B do S;

This construct means that, while statement S is being executed, no other process can
access the variable v. When a process tries to enter the critical-section region, the
Boolean expression B is evaluated. If the expression is true, statement S is executed. If it
is false, the process releases the mutual exclusion and is delayed until B becomes true and
no other process is in the region associated with v.
Now, let A is the shared data object. Let readcount is the variable that keeps track of how
many processes are currently reading the object A. Let writecount is the variable that

CT31 OPERATING SYSTEM ALCCS-AUG 2014

© IETE 9

keeps track of how many processes are currently writing the object A. Only one writer
can update object A, at a given time.

Variables readcount and writecount are initialized to 0. A writer can update the shared
object A when no reader is reading the object A.

region A when(readcount = = 0 AND writecount = = 0){

 ……
 writing is performed
 …… }
A reader can read the shared object A unless a writer has obtained permission to update
the object A.

 region A when(readcount >=0 AND writecount = = 0){
 ……
 reading is performed …… }

Q4 (a) With the help of example, discuss overlay.

Answer:
To enable a process to be larger than the amount of memory allocated to it, we can use
overlays. The idea of overlays is to keep in memory only those instructions and data that
are needed at any given time. When other instructions are needed, they are loaded into
space occupied previously by instructions that are no longer needed.
As an example, consider a two-pass assembler. During pass1, it constructs a symbol
table; then, during pass2, it generates machine-language code. We may be able to
partition such an assembler into pass1 code, pass2 code, the symbol table, and common
support routines used by both pass1 and pass2. Assume that the sizes of these
components are as follows:

Pass1 : 70 KB
Pass2 : 80 KB
Symbol table : 20 KB
Common routines : 30 KB

To load everything at once, we would require 200 KB of memory. If only 150 KB is
available, we cannot run our process. However, notice that pass1 and pass2 do not need
to be in memory at the same time. We thus define two overlays: Overlay A is the symbol
table, common routines, and pass1, and overlay B is the symbol table, common routines,
and pass2.
We add an overlay driver (10 KB) and start with overlay A in memory. When we finish
pass1, we jump to the overlay driver, which reads overlay B into memory, overwriting
overlay A, and then transfers control to pass2. Overlay A needs only 120 KB, whereas
overlay B needs 130 KB. We can now run our assembler in the 150 KB of memory. It
will load somewhat faster because fewer data need to be transferred before execution

CT31 OPERATING SYSTEM ALCCS-AUG 2014

© IETE 10

starts. However, it will run somewhat slower, due to the extra I/O to read the code for
overlay B over the code for overlay A.
The code for overlay A and the code for overlay B are kept on disk as absolute memory
images, and are read by the overlay driver as needed. Special relocation and linking
algorithms are needed to construct the overlays. As in dynamic loading, overlays do not
require any special support from the operating system. They can be implemented
completely by the user with simple file structures, reading from the files into memory and
then jumping to that memory and executing the newly read instructions. The operating
system notices only that there is more I/O than usual.

(b) Consider a paging system with the page table stored in memory.

(i) If a memory reference takes 200 nanoseconds, how long does a paged
memory reference take?

If we add associative registers, and 75 percent of all page-table references are found
in the associative registers, what is the effective memory reference time? (Assume
that finding a page-table entry in the associative registers takes zero time, if the
entry is there.)

Answer:

(i) 400 nanoseconds; 200 nanoseconds to access the page table and 200 nanoseconds
to access the word in memory.

(ii) Effective access time = 0.75 * (200 nanoseconds) + 0.25 * (400 nanoseconds) =
250 nanoseconds.

(c) What is the cause of thrashing? How does the system detect thrashing?

Answer:
Thrashing is caused by under allocation of the minimum number of pages required by a
process, forcing it to continuously page fault. The system can detect thrashing by
evaluating the level of CPU utilization as compared to the level of multiprogramming. It
can be eliminated by reducing the level of multiprogramming.

Q5 (a) Discuss the various attributes of a file? What are the methods of accessing
the information stored in a file? Discuss them.

Answer:
A file has certain attributes, which may vary from one operating system to another, but
typically consist of these:

• Name The symbolic file name is the only information kept in human readable
form.

• Type This information is needed for those systems that support different types.
• Location This information is a pointer to a device and to the location of the file

on that device.
• Size The current size of the file (in bytes, words or blocks), and possibly the

maximum allowed size are included in this attribute.

CT31 OPERATING SYSTEM ALCCS-AUG 2014

© IETE 11

• Protection Access-control information controls that can do reading, writing,
executing, and so on.

• Time, date, and user identification This information may be kept for creation,
last modification and last use. These data can be useful for protection, security,
and usage monitoring.

Different accessing methods are:

• Sequential Access: The simplest access method is sequential access. Information
in the file is processed in order, one record after the other. This mode of access is
by far the most common, for example, editor and compilers usually access files in
sequential methods.

• Direct Access: A file is made up of fixed-length logical records that allow
programs to read and write records rapidly in no particular order. The direct
access method is based on a disk model of a file, since disks allow random access
to any file block. For direct access, the file is viewed as a numbered sequence of
blocks or records. A direct-access file allows arbitrary blocks to be read or
written. There are no restrictions on the order of reading or writing for a direct-
access file. Direct-access files are of great use for immediate access to large
amounts of information. Databases are often of this type. When a query
concerning a particular subject arrives, the block containing the answer is
computed, and then that block is accessed directly to provide the desired
information.

CT31 OPERATING SYSTEM ALCCS-AUG 2014

© IETE 12

(b) With the help of a figure describe the life cycle of a blocking read request?

Answer:
The typical life cycle of a blocking read request, as depicted in following figure suggests
that an I/O operation requires a great many steps that together consume a tremendous
number of CPU cycles.

The Life Cycle of an I/O request

1. A process issues a blocking read () system call to a file descriptor of a file that has
been opened previously.
2. The system-call code in the kernel checks the parameters for correctness. In the case of
input, if the data are already available in the buffer cache, the data are returned to the
process, and the I/O request is completed.
3. Otherwise, a physical I/O must be performed. The process is removed from the run
queue and is placed on the wait queue for the device, and the I/O request is scheduled.
Eventually, the I/O subsystem sends the request to the device driver. Depending on the
operating system, the request is sent via a subroutine call or an in-kernel message.
4. The device driver allocates kernel buffer space to receive the data and schedules the
I/O. Eventually, the driver sends commands to the device controller by writing into the
device-control registers.

CT31 OPERATING SYSTEM ALCCS-AUG 2014

© IETE 13

5. The device controller operates the device hardware to perform the data transfer.
6. The driver may poll for status and data, or it may have set up a DMA transfer into
kernel memory. We assume that the transfer is managed by a DMA controller, which
generates an interrupt when the transfer completes.
7. The correct interrupt handler receives the interrupt via the interrupt vector table, stores
any necessary data, signals the device driver, and returns from the interrupt.
8. The device driver receives the signal, determines which I/O request has completed,
determines the request's status, and signals the kernel I/O subsystem that the request has
been completed.
9. The kernel transfers data or returns codes to the address space of the requesting process
and moves the process from the wait queue back to the ready queue.
10. Moving the process to the ready queue unblocks the process. When the scheduler
assigns the process to the CPU, the process resumes execution at the completion of the
system call.

Q6 (a) Suppose that a disk drive has 5000 cylinders, numbered 0 to 4999. The drive
is currently serving a request at cylinder 143, and the previous request was at
cylinder 125. The queue of pending requests, in FIFO order, is
 86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130
 Starting from the current head position, what is the total
distance (in cylinders) that the disk arm moves to satisfy all the pending requests,
for each of the following disk scheduling algorithms?
 (i) FCFS (ii) SSTF
 (iii) SCAN (iv) LOOK

 (v) C-SCAN

Answer:

(i) The FCFS schedule is 143, 86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130. The
total seek distance is 7081.

(ii) The SSTF schedule is 143, 130, 86, 913, 948, 1022, 1470, 1509, 1750, 1774. The
total seek distance is 1745.

(iii)The SCAN schedule is 143, 913, 948, 1022, 1470, 1509, 1750, 1774, 4999, 130,
86. The total seek distance is 9769.

(iv) The LOOK schedule is 143, 913, 948, 1022, 1470, 1509, 1750, 1774, 130, 86.
The total seek distance is 3319.

(v) The C-SCAN schedule is 143, 913, 948, 1022, 1470, 1509, 1750, 1774, 4999, 86,
130. The total seek distance is 9813.

(b) Describe the different methods of implementing the access matrix. Compare
these methods.

Answer:
The different methods of implementing the access matrix are as follows:

• Global Table: The simplest implementation of the access matrix is a global table
consisting of a set of ordered triples <domain, object, rights-set>. Whenever an

CT31 OPERATING SYSTEM ALCCS-AUG 2014

© IETE 14

operation M is executed on an object Oj, within domain Di, the global table is
searched for a triple <Di, Oj, Rk>, with M ∈ Rk. If this triple is found, the
operation is allowed to continue; otherwise, an exception (or error) condition is
raised.
This implementation suffers from several drawbacks. The table is usually large
and thus cannot be kept in main memory, so additional I/O is needed. Virtual
memory techniques are often used for managing this table. In addition, it is
difficult to take advantage of special groupings of objects or domains. For
example, if everyone can read a particular object, it must have a separate entry in
every domain.

• Access Lists for Objects: Each column in the access matrix can be implemented
as an access list for one object. Obviously, the empty entries can be discarded.
The resulting list for each object consists of ordered pairs <domain, rights-set>,
which define all domains with a nonempty set of access rights for that object.
This approach can be extended easily to define a list plus a default set of access
rights. When an operation M on an object Oj is attempted in domain Dj, we search
the access list for object Oj, looking for an entry <Di, Rk > with M ∈ Rk. If the
entry is found, we allow the operation; if it is not, we check the default set. If M is
in the default set, we allow the access. Otherwise, access is denied, and an
exception condition occurs. For efficiency, we may check the default set first and
then search the access list.

• Capability Lists for Domains: Rather than associating the columns of the access
matrix with the objects as access lists, we can associate each row with its domain.
A capability list for a domain is a list of objects together with the operations
allowed on those objects. An object is often represented by its physical, name or
address, called a capability. To execute operation M on object 0,, the process
executes the operation M, specifying the capability (or pointer) for object O/ as a
parameter. Simple possession of the capability means that access is allowed.
The capability list is associated with a domain, but it is never directly accessible
to a process executing in that domain. Rather, the capability list is itself a
protected object, maintained by the operating system and accessed by the user
only indirectly. Capability-based protection relies on the fact that the capabilities
are never allowed to migrate into any address space directly accessible by a user
process (where they could be modified). If all capabilities are secure, the object
they protect is also secure against unauthorized access.
Capabilities were originally proposed as a kind of secure pointer, to meet the need
for resource protection that was foreseen as multiprogrammed computer systems
came of age. The idea of an inherently protected pointer provides a foundation for
protection that canbe extended up to the applications level. To provide inherent
protection, we must distinguish capabilities from other kinds of objects and they
must be interpreted by an abstract machine on which higher-level programs run.

Capabilities are usually distinguished from other data in one of two ways:

o Each object has a tag to denote its type either as a capability or as
accessible data. The tags themselves must not be directly accessible by an

CT31 OPERATING SYSTEM ALCCS-AUG 2014

© IETE 15

application program. Hardware or firmware support may be used to
enforce this restriction. Although only 1 bit is necessary to distinguish
between capabilities and other objects, more bits are often used. This
extension allows all objects to be tagged with their types by the hardware.
Thus, the hardware can distinguish integers, floating-point numbers,
pointers, Booleans, characters, instructions, capabilities, and uninitialized
values by their tags.

o Alternatively, the address space associated with a program can be split
into two parts. One part is accessible to the program and contains the
program's normal data and instructions. The other part, containing the
capability list, is accessible only by the operating system. A segmented
memory space is useful to support this approach.

• A Lock-Key Mechanism: The lock-key scheme is a compromise between access
lists and capability lists. Each object has a list of unique bit patterns, called locks.
Similarly, each domain has a list of unique bit patterns, called keys. A process
executing in a domain can access an object only if that domain has a key that
matches one of the locks of the object.

Comparison between different methods
We now compare the various techniques for implementing an access matrix. Using a
global table is simple; however, the table can be quite large and often cannot take
advantage of special groupings of objects or domains. Access lists correspond directly to
the needs of users. When a user creates an object, he can specify which domains can
access the object, as well as the operations allowed. However, because access-rights
information for a particular domain is not localized, determining the set of access rights
for each domain is difficult. In addition, every access to the object must be checked,
requiring a search of the access list. In a large system with long access lists, this search
can be time consuming.

Q7 (a) Write shorts notes on fully distributed Deadlock-detection algorithm.

Answer:
In the fully distributed deadlock-detection algorithm, all controllers share equally the
responsibility for detecting deadlock. Every site constructs a wait for graph that
represents a part of the total graph, depending on the dynamic behavior of the system.
The idea is that, if a deadlock exists, a cycle will appear in at least one of the partial
graphs. We present one such algorithm, which involves construction of partial graphs in
every site.
Each site maintains its own local wait-for graph. A local wait-for graph in this scheme we
add one additional node Pex to the graph. An arc Pi Pex exists in the graph if Pi is
waiting for a data item in another site being held by any process. Similarly, an arc Pex
Pj exists in the graph if a process at another site is waiting to acquire a resource currently
being held by Pj in this local site.

CT31 OPERATING SYSTEM ALCCS-AUG 2014

© IETE 16

To illustrate this situation, we consider the two local wait-for graphs as in figure (a)
below. The addition of the node Pex in both graphs results in the local wait-for graphs
shown in figure (b).

Figure (a): Two local wait-for graphs

Figure (b): Augmented local wait-for graphs of figure (a)
If a local wait-for graph contains a cycle that does not involve node Pex, then the system
is in a deadlocked state. If, however, a local graph contains a cycle involving Pex, then
this implies the possibility of a deadlock.
To ascertain whether a deadlock does exist, we must invoke a distributed deadlock-
detection algorithm.
Suppose that, at site Si, the local wait-for graph contains a cycle involving node P. This
cycle must be of the form

Pex Pk1 Pk2 … … Pkn Pex
which indicates that process Pkn in site Si is waiting to acquire a data item located in
some other site—say, Sj. On discovering this cycle, site Si sends to site Sj a deadlock-
detection message containing information about that cycle.
When site Sj receives this deadlock-detection message, it updates its local wait-for graph
with the new information. Then it searches the newly constructed wait-for graph for a
cycle not involving Pex. If one exists, a deadlock is found, and an appropriate recovery
scheme is invoked. If a cycle involving Pex is discovered, then Sj transmits a deadlock-
detection message to the appropriate site—say, Sk. Site Sk, in return, repeats the
procedure. Thus, after a finite number of rounds, either a deadlock is discovered or the
deadlock-detection computation halts.
To illustrate this procedure, we consider the local wait-for graphs of figure (b). Suppose
that site S1 discovers the cycle

Pex P2 P3 Pex
Since P3 is waiting to acquire a data item in site S2, a deadlock-detection message
describing that cycle is transmitted from site S1 to site S2. When site S2 receives this

CT31 OPERATING SYSTEM ALCCS-AUG 2014

© IETE 17

message, it updates its local wait-for graph, obtaining the wait-for graph of figure (c).
This graph contains the cycle

P2 P3 P4 P2
which does not include node Pex. Therefore, the system is in a deadlocked state, and an
appropriate recovery scheme must be invoked.

Figure (c): Augmented local wait-for graph in site S2 of figure (b)

(b) What are the various parameters that define the Quality of Service (QoS) for
multimedia applications? Discuss each of them.

Answer:
The numbers of parameters defining QoS for multimedia applications are as follows:

• Throughput: Throughput is the total amount of work done during a certain
interval. For multimedia applications, throughput is the required data rate.

• Delay: Delay refers to the elapsed time from when a request is first submitted to
when the desired result is produced. For example, the time from when a client
requests a media stream to when the stream is delivered is the delay.

• Jitter: Jitter is related to delay; but whereas delay refers to the time a client must
wait to receive a stream, jitter refers to delays that occur during playback of the
stream. Certain multimedia applications, such as on-demand real-time streaming,
can tolerate this sort of delay. Jitter is generally considered unacceptable for
continuous-media applications, however, because it may mean long pauses—or
lost frames—during playback. Clients can often compensate for jitter by buffering
a certain amount of data—say, 5 seconds worth—before beginning playback.

• Reliability: Reliability refers to how errors are handled during transmission and
processing of continuous media. Errors may occur due to lost packets in the
network or processing delays by the CPU. In these—and other—scenarios, errors
cannot be corrected, since packets typically arrive too late to be useful.

(c) Differentiate between location independence and static location transparency in
a distributed file system?

Answer:
A few aspects that can differentiate location independence and static location
transparency are as follows:

• Divorce of data from location, as exhibited by location independence, provides a
better abstraction for files. A file name should denote the file's most significant
attributes, which are its contents rather than its location. Location-independent
files can be viewed as logical data containers that are not attached to a specific

CT31 OPERATING SYSTEM ALCCS-AUG 2014

© IETE 18

storage location. If only static location transparency is supported, the file name
still denotes a specific, although hidden, set of physical disk blocks.

• Static location transparency provides users with a convenient way to share data.
Users can share remote files by simply naming the files in a location transparent
manner, as though the files were local. Nevertheless, sharing the storage space is
cumbersome, because logical names are still statically attached to physical storage
devices. Location independence promotes sharing the storage space itself, as well
as the data objects. When files can be mobilized, the overall, system-wide storage
space looks like a single virtual resource. A possible benefit of such a view is the
ability to balance the utilization of disks across the system.

• Location independence separates the naming hierarchy from the storage devices
hierarchy and from the intercomputer structure. By contrast, if static location
transparency is used (although names are transparent), we can easily expose the
correspondence between component units and machines. The machines are
configured in a pattern similar to the naming structure. This configuration may
restrict the architecture of the system unnecessarily and conflict with other
considerations. A server in charge of a root directory is an example of a structure
that is dictated by the naming hierarchy and contradicts decentralization
guidelines.

Text Books

1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne (2010), “Operating
System Principle” John wiley & Sons (Asia) Pvt. Ltd.

2. Andrew S Tanenbaum “Modern Operating Systems” (2009) Pearson
Education.

