
CT21 OOP USING JAVA ALCCS-AUG 2014

© IETE 1

Q.1 a. The signature for main() function in every Java application program is
 public static void main(String args[])
 What is the role of keyword ‘static’ in the above declaration? What

happens if we do not write keyword static in the above declaration?
Answer:
The keyword static allows main() to be called without having to instantiate a particular
instance of the class. This is necessary since main() is called by the Java interpreter
before any objects are made.
If we omit the keyword static from the main function declaration, the program will
compile but there will be runtime error such as “Exception in thread “main”
java.lang.NoSuchMethodError : Main”.

 b. What is method overloading? Is return type alone sufficient for method

overloading?

Answer:
In Java it is possible to define two or more methods within the same class that share the
same name, as long as their parameter declarations are different. When this is the case,
the methods are said to be overloaded, and the process is referred to as method
overloading. Method overloading is one of the ways that Java implements polymorphism.
Method overloading is one of Java’s most exciting and useful features.
When an overloaded method is invoked, Java uses the type and/or number of arguments
as its guide to determine which version of the overloaded method to actually call. Thus,
overloaded methods must differ in the type and/or number of their parameters.
No, only return type of the method is not sufficient for method overloading.
While overloaded methods may have different return types, the return type alone is
insufficient to distinguish two versions of a method. When Java encounters a call to an
overloaded method, it simply executes the version of the method whose parameters
match the arguments used in the call.

 c. Under what circumstances does a compiler insists that a class must be

declared as an abstract class? Can an abstract class be declared as final
also?

Answer:
The compiler insists that a class must be declared as an abstract class if any of the
following conditions is true:

(i) the class has one or more abstract methods
(ii) the class inherits one or more abstract methods (from an abstract parent) for

which it does not provide implementation.
(iii) The class declares that it implements an interface but does not provide

implementations for every method of that interface.

Thus, according to these three conditions, the abstract class is in some sense is
incomplete. Thus, this class must be subclassed. But a class declared as final class can’t
be subclassed. Hence, a class cannot be declared as abstract and final simultaneously.

CT21 OOP USING JAVA ALCCS-AUG 2014

© IETE 2

 d. List the differences between Java application and Java applet?

Answer:
There are some important differences between an applet and a standalone Java
application, including the following:

• An applet is a Java class that extends the java.applet.Applet class.
• A main() method is not invoked on an applet, and an applet class will not define

main().
• Applets are designed to be embedded within an HTML page.
• When a user views an HTML page that contains an applet, the code for the applet

is downloaded to the user's machine.
• A JVM is required to view an applet. The JVM can be either a plug-in of the Web

browser or a separate runtime environment.
• The JVM on the user's machine creates an instance of the applet class and invokes

various methods during the applet's lifetime.
• Applets have strict security rules that are enforced by the Web browser. The

security of an applet is often referred to as sandbox security, comparing the applet
to a child playing in a sandbox with various rules that must be followed.

• Other classes that the applet needs can be downloaded in a single Java Archive
(JAR) file.

 e. What is Anonymous Inner Classes? Illustrate how an Anonymous Inner

Class can facilitate the writing of event handlers?

Answer:
An anonymous inner class is one that is not assigned a name. Consider the applet shown
in the following listing. As before, its goal is to display the string “Mouse Pressed” in the
status bar of the applet viewer or browser when the mouse is pressed.

// Anonymous inner class demo.
import java.applet.*;
import java.awt.event.*;
/*
<applet code="AnonymousInnerClassDemo" width=200 height=100>
</applet>
*/
public class AnonymousInnerClassDemo extends Applet {

public void init() {
addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent me) {
showStatus("Mouse Pressed");

}
});

}
}

CT21 OOP USING JAVA ALCCS-AUG 2014

© IETE 3

There is one top-level class in this program: AnonymousInnerClassDemo. The init()
method calls the addMouseListener() method. Its argument is an expression that
defines and instantiates an anonymous inner class. Let’s analyze this expression
carefully.
The syntax new MouseAdapter() { ... } indicates to the compiler that the code between
the braces defines an anonymous inner class. Furthermore, that class extends
MouseAdapter. This new class is not named, but it is automatically instantiated when
this expression is executed.
Because this anonymous inner class is defined within the scope of
AnonymousInnerClassDemo, it has access to all of the variables and methods within
the scope of that class. Therefore, it can call the showStatus() method directly.

 f. Java has a standard class called MouseEvent. What is the purpose of this

class? What does an object of type MouseEvent do?

Answer:
When an event occurs, the system packages information about the event into an object.
That object is passed as a parameter to the event-handling routine. Different types of
events are represented by different classes of objects. An object of type MouseEvent
represents a mouse or mouse motion event. It contains information about the location of
the mouse cursor and any modifier keys that the user is holding down. This information
can be obtained by calling the instance methods of the object. For example, if evt is a
MouseEvent object, then evt.getX() is the x-coordinate of the mouse cursor, and
evt.isShiftDown() is a boolean value that tells you whether the user was holding down the
Shift key.

 g. Java uses "Garbage collection" for memory management. Explain what

is meant here by Garbage collection. What is the alternative to Garbage
collection?

Answer:
The purpose of garbage collection is to identify objects that can no longer be used, and to
dispose of such objects and reclaim the memory space that they occupy. If garbage
collection is not used, then the programmer must be responsible for keeping track of
which objects are still in use and disposing of objects when they are no longer needed. If
the programmer makes a mistake, then there is a "memory leak," which might gradually
fill up memory with useless objects until the program crashes for lack of memory.

Q.2 a. With the help of a Java program explain the difference between “equals
and ==”.

Answer:
The equals() method and the == operator perform two different operations. The equals(
) method compares the characters inside a String object. The == operator compares two
object references to see whether they refer to the same instance. The following program
shows how two different String objects can contain the same characters, but references to
these objects will not compare as equal:

CT21 OOP USING JAVA ALCCS-AUG 2014

© IETE 4

// equals() vs ==
class EqualsNotEqualTo {

public static void main(String args[]) {
String s1 = "Hello";
String s2 = new String(s1);
System.out.println(s1 + " equals " + s2 + " -> " +

s1.equals(s2));
System.out.println(s1 + " == " + s2 + " -> " + (s1 == s2));

}
}

The variable s1 refers to the String instance created by “Hello”. The object referred to by
s2 is created with s1 as an initializer. Thus, the contents of the two String objects are
identical, but they are distinct objects. This means that s1 and s2 do not refer to the same
objects and are, therefore, not ==, as is shown here by the output of the preceding
example:
OUTPUT

Hello equals Hello -> true
Hello == Hello -> false

 b. Explain the use of final keyword in respect of inheritance.

Answer:
The uses of final keyword applicable to inheritance are as follows:
Using final to Prevent Overriding
While method overriding is one of Java’s most powerful features, there will be times
when you will want to prevent it from occurring. To disallow a method from being
overridden, specify final as a modifier at the start of its declaration. Methods declared as
final cannot be overridden. The following fragment illustrates final:

class A {
final void meth() {

System.out.println("This is a final method.");
}

}

class B extends A {

void meth() { // ERROR! Can't override.
System.out.println("Illegal!");

}
}

Because meth() is declared as final, it cannot be overridden in B. If you attempt to do
so, a compile-time error will result.
Methods declared as final can sometimes provide a performance enhancement: The
compiler is free to inline calls to them because it “knows” they will not be overridden by
a subclass. When a small final method is called, often the Java compiler can copy the
bytecode for the subroutine directly inline with the compiled code of the calling method,

CT21 OOP USING JAVA ALCCS-AUG 2014

© IETE 5

thus eliminating the costly overhead associated with a method call. Inlining is only an
option with final methods. Normally, Java resolves calls to methods dynamically, at
runtime. This is called late binding. However, since final methods cannot be overridden,
a call to one can be resolved at compile time. This is called early binding.

Using final to Prevent Inheritance
Sometimes you will want to prevent a class from being inherited. To do this, precede the
class declaration with final. Declaring a class as final implicitly declares all of its
methods as final, too. As you might expect, it is illegal to declare a class as both abstract
and final since an abstract class is incomplete by itself and relies upon its subclasses to
provide complete implementations.
Here is an example of a final class:

final class A {
// ...

}

// The following class is illegal.
class B extends A { // ERROR! Can't subclass A

// ...
}

As the comments imply, it is illegal for B to inherit A since A is declared as final.

 c. Suppose that a class, Employee, is defined as follows:
 class Employee {
 String lastName;
 String firstName;
 double hourlyWage;
 int yearsWithCompany;
 }
 Suppose that data about 100 employees is already stored in an array:
 Employee[] employeeData = new Employee[100];
 Write a code segment that will output the first name, last name and

hourly wage of each employee who has been with the company for 20
years or more..

Answer:
(The data for the i-th employee is stored in an object that can be referred to as
employeeData[i]. The four pieces of data about that employee are members of this object
and can be referred to as:

employeeData[i].firstName
employeeData[i].lastName
employeeData[i].hourlyWage
employeeData[i].yearsWithCompany

The code segment uses a for loop to consider each employee in the array.)

 for (int i=0; i < 100; i++) {

CT21 OOP USING JAVA ALCCS-AUG 2014

© IETE 6

 if (employeeData[i].yearsWithCompany >= 20)
 System.out.println(employeeData[i].firstName + " " +
 employeeData[i].lastName + ": " +
 employeeData[i].hourlyWage);
 }

 Q.3 a. Define Interface. How is it similar to and different from a class? Can an

interface be extended? If yes, explain with the help of an example?

Answer:
An interface is a collection of abstract methods. A class implements an interface, thereby
inheriting the abstract methods of the interface. An interface is not a class. Writing an
interface is similar to writing a class, but they are two different concepts. A class
describes the attributes and behaviors of an object. An interface contains behaviors that a
class implements. Unless the class that implements the interface is abstract, all the
methods of the interface need to be defined in the class.

The general form of an interface:

access interface name {
return-type method-name1(parameter-list);
return-type method-name2(parameter-list);
type final-varname1 = value;
type final-varname2 = value;

// ...
return-type method-nameN(parameter-list);
type final-varnameN = value;

}
Here, access is either public or not used. When no access specifier is included, then
default access results, and the interface is only available to other members of the package
in which it is declared. When it is declared as public, the interface can be used by any
other code. name is the name of the interface, and can be any valid identifier. The
methods which are declared within the interface have no bodies. They end with a
semicolon after the parameter list. They are, essentially, abstract methods; there can be no
default implementation of any method specified within an interface. Each class that
includes an interface must implement all of the methods.
Variables can be declared inside of interface declarations. They are implicitly final and
static, meaning they cannot be changed by the implementing class. They must also be
initialized with a constant value. All methods and variables are implicitly public if the
interface, itself, is declared as public.
Here is an example of an interface definition. It declares a simple interface which
contains one method called callback() that takes a single integer parameter.

interface Callback {
void callback(int param);

}

CT21 OOP USING JAVA ALCCS-AUG 2014

© IETE 7

An interface is similar to a class in the following ways:
• An interface can contain any number of methods.
• An interface is written in a file with a .java extension, with the name of the

interface matching the name of the file.
• The bytecode of an interface appears in a .class file.
• Interfaces appear in packages, and their corresponding bytecode file must be in a

directory structure that matches the package name.

An interface is different from a class in several ways, such as:

• You cannot instantiate an interface.
• An interface does not contain any constructors.
• All of the methods in an interface are abstract.
• An interface cannot contain instance fields. The only fields that can appear in an

interface must be declared both static and final.
• An interface is not extended by a class; it is implemented by a class.
• An interface can extend multiple interfaces.

One interface can inherit another by use of the keyword extends. The syntax is the same
as for inheriting classes. When a class implements an interface that inherits another
interface, it must provide implementations for all methods defined within the interface
inheritance chain. Following is an example:

// One interface can extend another.

interface A {
void meth1();
void meth2();

}

// B now includes meth1() and meth2() -- it adds meth3().

interface B extends A {
void meth3();

}
// This class must implement all of A and B

class MyClass implements B {
public void meth1() {

System.out.println("Implement meth1().");
}
public void meth2() {

System.out.println("Implement meth2().");
}
public void meth3() {

System.out.println("Implement meth3().");
}

}

CT21 OOP USING JAVA ALCCS-AUG 2014

© IETE 8

class IFExtend {
public static void main(String arg[]) {

MyClass ob = new MyClass();
ob.meth1();
ob.meth2();
ob.meth3();

}
}

If you might want to try removing the implementation for meth1() in MyClass. This will
cause a compile-time error. Any class that implements an interface must implement all
methods defined by that interface, including any that are inherited from other interfaces.

 b. Java has two ways to create Child threads. What are these two methods?
Explain them. Which of the two do you think is better and why?

Answer:
 Java defines two methods to create a child thread. These are

(i) By implementing the Runnable interface.
(ii) By extending the Thread class, itself.

The easiest way to create a thread is to create a class that implements the Runnable
interface. To implement Runnable interface, a class need only implement a single
method called run(), which is declared like this:
public void run()
Inside run(), we define the code that constitutes the new thread. It is important to
understand that run() can call other methods, use other classes, and declare variables,
just like the main thread can. The only difference is that run() establishes the entry point
for another, concurrent thread of execution within your program. This thread will end
when run() returns.
After the class has been created that implements Runnable, we will instantiate an object
of type Thread from within that class. After the new thread is created, it will not start
running until the method start() has been called , which is declared within Thread. In
essence, start() executes a call to run().
The start() method is shown here
void start()
Here is the program that will show how to create a child thread by implementing the
interface Runnable.

class NewThread implements Runnable {

Thread t;
NewThread() {
// Create a new, second thread
t = new Thread(this, "Demo Thread");
System.out.println("Child thread: " + t);
t.start(); // Start the thread
}

CT21 OOP USING JAVA ALCCS-AUG 2014

© IETE 9

// This is the entry point for the second thread.
public void run() {

try {
for(int i = 5; i > 0; i--) {

System.out.println("Child Thread: " + i);
Thread.sleep(500);

}
} catch (InterruptedException e) {

System.out.println("Child interrupted.");
}
System.out.println("Exiting child thread.");

}
}

class ThreadDemo {

public static void main(String args[]) {
new NewThread(); // create a new thread
try {

for(int i = 5; i > 0; i--) {
System.out.println("Main Thread: " + i);
Thread.sleep(1000);

}
} catch (InterruptedException e) {

System.out.println("Main thread interrupted.");
}
System.out.println("Main thread exiting.");

}
}

The second way to create a thread is to create a new class that extends Thread, and then
to create an instance of that class. The extending class must override the run() method,
which is the entry point for the new thread. It must also call start() to begin execution of
the new thread.
Here is the program that will show how to create a child thread by extending class
Thread.

class NewThread extends Thread {

NewThread() {
// Create a new, second thread
super("Demo Thread");
System.out.println("Child thread: " + this);
start(); // Start the thread

}
// This is the entry point for the second thread.
public void run() {

CT21 OOP USING JAVA ALCCS-AUG 2014

© IETE 10

try {
for(int i = 5; i > 0; i--) {

System.out.println("Child Thread: " + i);
Thread.sleep(500);

}
} catch (InterruptedException e) {

System.out.println("Child interrupted.");
}
System.out.println("Exiting child thread.");

}
}

class ExtendThread {

public static void main(String args[]) {
new NewThread(); // create a new thread
try {

for(int i = 5; i > 0; i--) {
System.out.println("Main Thread: " + i);
Thread.sleep(1000);

}
} catch (InterruptedException e) {

System.out.println("Main thread interrupted.");
}
System.out.println("Main thread exiting.");

}
}

The Thread class defines several methods that can be overridden by a derived
class. Of these methods, the only one that must be overridden is run(). This is, of course,
the same method required when you implement Runnable. Many Java programmers feel
that classes should be extended only when they are being enhanced or modified in some
way. So, if you will not be overriding any of Thread’s other methods, it is probably best
simply to implement Runnable.

 Q.4 a. What are Packages? How are Packages declared and defined in Java
programming language? Write the advantages of using Packages in Java
programs.

Answer:
Java provides a mechanism for partitioning the class name space into more manageable
mechanism by means of the package. The package is both a naming and a visibility
control mechanism. Classes can be defined inside a package that is not accessible by code
outside that package. You can also define class members that are only exposed to other

CT21 OOP USING JAVA ALCCS-AUG 2014

© IETE 11

members of the same package. This allows the classes to have intimate knowledge of
each other, but not expose that knowledge to the rest of the world.
Thus, a package can be defined as “ a collection of related classes and interfaces that
provides access protection and namespace management”.

Creating a package is quite easy: simply include a package command as the first
statement in a Java source file. Any classes declared within that file will belong to the
specified package. The package statement defines a name space in which classes are
stored. If you omit the package statement, the class names are put into the default
package, which has no name. While the default package is fine for small and simple
programs, it is inadequate for real applications. Most of the time, you will define a
package for your code.
The general form of the package statement:
package pkg;
Here, pkg is the name of the package. For example, the following statement creates a
package called MyPackage.
package MyPackage;
Java uses file system directories to store packages. For example, the .class files for any
classes you declare to be part of MyPackage must be stored in a directory called
MyPackage. It is case sensitive thus the directory name must match the package name
exactly.
More than one file can include the same package statement. The package statement
simply specifies to which package the classes defined in a file belong. It does not exclude
other classes in other files from being part of that same package. Most real-world
packages are spread across many files.
You can create a hierarchy of packages. To do so, simply separate each package name
from the one above it by use of a period. The general form of a multileveled package
statement is shown here:
package pkg1[.pkg2[.pkg3]];
A package hierarchy must be reflected in the file system of your Java development
system. For example, a package declared as
package java.awt.image;
needs to be stored in java/awt/image, java\awt\image, or java:awt:image on your
UNIX, Windows, or Macintosh file system, respectively. Be sure to choose your package
names carefully. You cannot rename a package without renaming the directory in which
the classes are stored.

Advantages of using Packages in Java program:

• It makes classes easier to find and use.
• It helps in avoiding naming conflicts.
• It helps in controlling the access.

CT21 OOP USING JAVA ALCCS-AUG 2014

© IETE 12

 b. Create a try block that is likely to generate exception at three different
places. Provide the necessary catch blocks to catch and handle those
exceptions.

Answer:
class ThreeException {

static void threeExcep(int a) {
try {

/* If one command-line arg is used, then a divide-by-zero
exception will be generated by the following code. */

if(a==1) a = a/(a-a); // division by zero
/* If two command-line args are used, then generate an out-of-

bounds exception. */
if(a==2) {

int c[] = { 1 };
c[42] = 99; // generate an out-of-bounds exception

}
} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index out-of-bounds: " + e);
}

}
public static void main(String args[]) {

try {
int a = args.length;

/* If no command-line args are present, the following
statement will generate a divide-by-zero exception. */
int b = 42 / a;
System.out.println("a = " + a);
threeExcep(a);

} catch(ArithmeticException e) {
System.out.println("Divide by 0: " + e);

}
}

}

Q.5 a. What is Event Delegation Model? Explain the terms event, event source

and event listener in this respect?
Answer:
The modern approach of handling events is based on the delegation event model, which
defines standard and consistent mechanisms to generate and process events. Its concept is
quite simple: a source generates an event and sends it to one or more listeners. In this
event model, the listener simply waits until it receives an event. Once received, the
listener processes the event and then returns. The advantage of this design is that the
application logic that processes events is cleanly separated from the user interface logic
that generates those events. A user interface element is able to “delegate” the processing
of an event to a separate piece of code.

CT21 OOP USING JAVA ALCCS-AUG 2014

© IETE 13

In the delegation event model, listeners must register with a source in order to receive an
event notification. This provides an important benefit: notifications are sent only to
listeners that want to receive them. This is a more efficient way to handle.

Event
An event is an object that describes a state change in a source. It can be generated as a
consequence of a person interacting with the elements in a graphical user interface. Some
of the activities that cause events to be generated are pressing a button, entering a
character via the keyboard, selecting an item in a list, and clicking the mouse. Many other
user operations could also be cited as examples.
Events may also occur that are not directly caused by interactions with a user interface.
For example, an event may be generated when a timer expires, a counter exceeds a value,
software or hardware failure occurs, or an operation is completed.

Event Source
A source is an object that generates an event. This occurs when the internal state of that
object changes in some way. Sources may generate more than one type of event.
A source must register listeners in order for the listeners to receive notifications about a
specific type of event. Each type of event has its own registration method. The general
form:
public void addTypeListener(TypeListener el)
Here, Type is the name of the event and el is a reference to the event listener. For
example, the method that registers a keyboard event listener is called addKeyListener().
The method that registers a mouse motion listener is called addMouseMotionListener(
). When an event occurs, all registered listeners are notified and receive a copy of the
event object. This is known as multicasting the event. In all cases, notifications are sent
only to listeners that register to receive them.
Some sources may allow only one listener to register. The general form of such a method
is this:
public void addTypeListener(TypeListener el)
throws java.util.TooManyListenersException
Here, Type is the name of the event and el is a reference to the event listener. When such
an event occurs, the registered listener is notified. This is known as unicasting the event.
A source must also provide a method that allows a listener to unregister an interest in a
specific type of event. The general form of such a method is this:
public void removeTypeListener(TypeListener el)
Here, Type is the name of the event and el is a reference to the event listener. For
example, to remove a keyboard listener, you would call removeKeyListener().
The methods that add or remove listeners are provided by the source that generates
events. For example, the Component class provides methods to add and remove
keyboard and mouse event listeners.

Event Listeners
A listener is an object that is notified when an event occurs. It has two major
requirements. First, it must have been registered with one or more sources to receive

CT21 OOP USING JAVA ALCCS-AUG 2014

© IETE 14

notifications about specific types of events. Second, it must implement methods to
receive and process these notifications.
The methods that receive and process events are defined in a set of interfaces found in
java.awt.event. For example, the MouseMotionListener interface defines two methods
to receive notifications when the mouse is dragged or moved. Any object may receive
and process one or both of these events if it provides an implementation of this interface.

 b. Write a program in Java that reads a string and rewrite it in the
alphabetical order. For example, the word STRING should be written as
GINRST.

Answer:
 import java.io.*;
public class StringSorting{

 public static void main(String args[]){
 String name = null;
 try {
 System.out.print("Enter string\n");
 BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));
 name = br.readLine();
 char nameChar[] = new char[100];

 nameChar = name.toCharArray();

 nameChar = name.toCharArray();

 for(int i=0;i<nameChar.length;i++){
 for(int j=0;j<nameChar.length-i-1;j++){
 if(nameChar[j] >nameChar[j+1]){
 char temp = nameChar[j];;
 nameChar[j] = nameChar[j+1];
 nameChar[j+1] = temp;
 }
 }
 }

 System.out.print("\n Entered String's character in sorted order are\n");
 for(int k = 0;k<nameChar.length;k++){
 System.out.print(nameChar[k]);
 }

 }
 catch(IOException ex){

CT21 OOP USING JAVA ALCCS-AUG 2014

© IETE 15

 System.out.println("NavError = " + ex);
 }
 }
}

 Q.6 a. Suppose that you are writing an applet and you want the applet to

respond in some way when the user clicks the mouse on the applet. What
are the four things you need to remember to put into the source code of
your applet?

Answer:
(1) Since the event and listener classes are defined in the java.awt.event package, you
have to put "import java.awt.event.*;" at the beginning of the source code, before the
class definition.
(2) The applet class must be declared to implement the MouseListener interface, by
adding the words "implements MouseListener" to the heading. For example: "public class
MyApplet extends JApplet implements MouseListener". (It is also possible for another
object besides the applet to listen for the mouse events.)
(3) The class must include definitions for each of the five methods specified in the
MouseListener interface. Even if a method is not going to do anything, it has to be
defined, with an empty body.
(4) The applet (or other listening object) must be registered to listen for mouse events by
calling addMouseListener(). This is usually done in the init() method of the applet.

 b. Explain what is meant by input focus? How is the input focus managed in
a Java GUI program?

Answer:
When the user uses the keyboard, the events that are generated are directed to some
component. At a given time, there is just one component that can get keyboard events.
That component is said to have the input focus. Usually, the appearance of a component
changes if it has the input focus and wants to receive user input from the keyboard. For
example, there might be a blinking text cursor in the component, or the component might
be hilited with a colored border. In order to change its appearance in this way, the
component needs to be notified when it gains or loses the focus. In Java, a component
gets this notification by listening for focus events.
Some components, including applets and canvasses, do not get the input focus unless
they request it by calling requestFocus(). If one of these components needs to process
keyboard events, it should also listen for mouse events and call requestFocus() when the
user clicks on the component. (Unfortunately, this rule is not enforced uniformly on all
platforms.)

 c. What are the different methods that are used to play an audio file
represented by the AudioClip interface in the java.applet package? Use
those methods in your Java applet to illustrate the steps to play an audio.

CT21 OOP USING JAVA ALCCS-AUG 2014

© IETE 16

Answer:
 An applet can play an audio file represented by the AudioClip interface in the java.applet
package. The AudioClip interface has three methods, including:

• public void play(): Plays the audio clip one time, from the beginning.
• public void loop(): Causes the audio clip to replay continually.
• public void stop(): Stops playing the audio clip.

To obtain an AudioClip object, you must invoke the getAudioClip() method of the Applet
class. The getAudioClip() method returns immediately, whether or not the URL resolves
to an actual audio file. The audio file is not downloaded until an attempt is made to play
the audio clip.
Following is the example showing all the steps to play an audio:

import java.applet.*;
import java.awt.*;
import java.net.*;
public class AudioDemo extends Applet {
 private AudioClip clip;
 private AppletContext context;
 public void init() {
 context = this.getAppletContext();
 String audioURL = this.getParameter("audio");
 if(audioURL == null) {
 audioURL = "default.au";
 }
 try {
 URL url = new URL(this.getDocumentBase(), audioURL);
 clip = context.getAudioClip(url);
 } catch(MalformedURLException e) {
 e.printStackTrace();
 context.showStatus("Could not load audio file!");
 }
 }
 public void start() {
 if(clip != null) {
 clip.loop();
 }
 }
 public void stop() {
 if(clip != null) {
 clip.stop();
 }
 }
}

Now let us call this applet as follows:

CT21 OOP USING JAVA ALCCS-AUG 2014

© IETE 17

<html>
<title>The ImageDemo applet</title>
<hr>
<applet code="AudioDemo.class" width="0" height="0">
<param name="audio" value="test.wav">
</applet>
<hr>
</html>

Q.7 a. What are Java Beans? Give its advantages? What are the various steps

needed to create a new Bean?
Answer:
A Java Bean is a software component that has been designed to be reusable in a variety
of different environments. There is no restriction on the capability of a Bean. It may
perform a simple function, such as checking the spelling of a document, or a complex
function, such as forecasting the performance of a stock portfolio. A Bean may be visible
to an end user. One example of this is a button on a graphical user interface. A Bean may
also be invisible to a user. Software to decode a stream of multimedia information in real
time is an example of this type of building block. Finally, a Bean may be designed to
work autonomously on a user’s workstation or to work in cooperation with a set of other
distributed components. Software to generate a pie chart from a set of data points is an
example of a Bean that can execute locally. However, a Bean that provides real-time
price information from a stock or commodities exchange would need to work in
cooperation with other distributed software to obtain its data.
Advantages of Java Beans

• A Bean obtains all the benefits of Java’s “write-once, run-anywhere” paradigm.
• The properties, events, and methods of a Bean that are exposed to an application

builder tool can be controlled.
• A Bean may be designed to operate correctly in different locales, which makes it

useful in global markets.
• Auxiliary software can be provided to help a person configure a Bean. This

software is only needed when the design-time parameters for that component are
being set. It does not need to be included in the run-time environment.

• The configuration settings of a Bean can be saved in persistent storage and
restored at a later time.

• A Bean may register to receive events from other objects and can generate events
that are sent to other objects.

Here are the steps that must be followed to create a new Bean:
1. Create a directory for the new Bean.
2. Create the Java source file(s).
3. Compile the source file(s).
4. Create a manifest file.
5. Generate a JAR file.
6. Start the BDK.
7. Test.

CT21 OOP USING JAVA ALCCS-AUG 2014

© IETE 18

 b. What are Datagrams? How does Java implement Datagrams? Write the
use of the following methods for accessing the internal state of a
Datagram packet:

 (i) InetAddress getAddress()
 (ii) int getPort()
 (iii) byte[] getData()

 (iv) int getLength()
 Answer:
Datagrams are bundles of information passed between machines. They are somewhat like
a hard throw from a well-trained but blindfolded catcher to the third baseman. Once the
datagram has been released to its intended target, there is no assurance that it will arrive
or even that someone will be there to catch it. Likewise, when the datagram is received,
there is no assurance that it hasn’t been damaged in transit or that whoever sent it is still
there to receive a response.
Java implements datagrams on top of the UDP protocol by using two classes: The
DatagramPacket object is the data container, while the DatagramSocket is the
mechanism used to send or receive the DatagramPackets.
DatagramPacket defines several constructors. The first constructor specifies a buffer
that will receive data, and the size of a packet. It is used for receiving data over a
DatagramSocket. The second form allows you to specify an offset into the buffer at
which data will be stored. The third form specifies a target address and port, which are
used by a DatagramSocket to determine where the data in the packet will be sent. The
fourth form transmits packets beginning at the specified offset into the data. Here are the
four constructors:

DatagramPacket(byte data[], int size)
DatagramPacket(byte data[], int offset, int size)
DatagramPacket(byte data[], int size, InetAddress ipAddress, int port)
DatagramPacket(byte data[], int offset, int size, InetAddress ipAddress, int port)

There are several methods for accessing the internal state of a DatagramPacket. They
give complete access to the destination address and port number of a packet, as well as
the raw data and its length.

(i) InetAddress getAddress() : Returns the destination InetAddress, typically
used for sending.

(ii) int getPort() : Returns the port number.
(iii) byte[] getData() : Returns the byte array of data contained in the datagram.

Mostly used to retrieve data from the datagram after it has been received.
(iv) int getLength() : Returns the length of the valid data contained inthe byte

array that would be returned from the getData() method. This typically does
not equal the length of the whole byte array.

Text Books

1. Cay Horstmann - Computing Concepts with Java 2 Essentials, John Wiley,

3rd edition.
2. E. Balagurusamy- Programming with Java: A Primer, 3rd Edition, 2006,
 Tata McGraw-Hill.

