DE70/DCS56/DE122/DC106 OBJECT ORIENTED PROGRAMMING WITH C++ | JUN 2015

Q.2 a. Write four advantages of using an Object Oriented Programming language. (4)

Answer:
The major advantages of OOPs are:

1. Simplicity: Software objects model real world objects, so the complexity is reduced
and the program structure is very clear,

2. Modularity: Each object forms a separate entity whose internal workings are decoupled
from other parts of the system.

3. Modifiability: It is easy to make minor changes in the data representation or the
procedures in an OO0 program. Changes inside a class do not affect any other part of a
program, since the only public interface that the external world has to a class is through
the use ol methods.

4. Extensibility: Adding new features or responding to changing operating environments

can be solved by introducing a few new objects and modifying some existing ones.

Maintainability: Objects can be maintained separately, making locating and fixing

problems easier.

6. Re-usability: Objects can be reused in different programs

Ln

b. Differentiate between an object and a class with a suitable example. “4)

Answer:
Class is blueprint means you can create different object based on one class which varies
in there property. e.g. if Car is a class than Mercedes, BMW or Audi can be considered as
object because they are essentially a car but have different size, shape, color and feature.

A Class can be analogous to structure in C programming language with only difference
that structure doesn't contain any methods or functions, while class in Java contains both
state and behavior, state is represented by field in class e.g. numberOfGears, whether car
is automatic or manual, car is running or stopped etc. On the other hand behavior is
controlled by functions, also known as methods in Java e.g. start() will change state of car
trom stopped to started or running and stopd) will do opposite.

Object 15 also called instance 1n Java and ¢very instance has different values of instance
variables, e.g. in following code

c¢. Write an object based program to read a positive integer n, compute the sum of

first n natural number and then output
“Sum of first natural number is =” <actual computed sum>. 8)

Answer:

© IETE

DE70/DC56/DE122/DC106 OBJECT ORIENTED PROGRAMMING WITH C++ | JUN 2015
Q.3 a. Define a class strcmp that accepts two strings as input and compares the two string
and returns a value -1, 0 or 1 depending upon whether first string is less than or
equal to or greater than the second string. 6)
Answer:
b. Give four basic differences between a pointer and an array. “4)
Answer:
Pointer Array

1. A pointer is a place in memory that
keeps address of another place inside

2. Pointer can’t be initialized at
delinibion.

4. Pointer is dynamic in nature, The
memaory allocation can be resized or
freed later.

4, The assembly code of Pointer is
different than Array

1. An array is a single, pre allocated
chunk of contiguous elements (all of
the same type), fixed in size and
location,

2. Array can be initialized at
definition. Example

int num(] = { 2, 4, 5}

9. They are statie in nature, Onee
memory is alloeated, it cannot be
resized or freed dvnamically,

4. The assembly code of Array is
different than Pointer,

¢. What do you mean by data abstraction and encapsulation? (6)

Answer:

Encapsulation has two faces; data abstraction and information hiding. Data abstraction is a
type seen from the outside. Information hiding is a type seen from the inside.
Sometime encapsulation is used to mean information hiding only but I think the definition
| gave is better because if you encapsulate something vou get both an inside and an outside

right.

Abstraction focuses on the outside view of an object {i.e. the imerface)

Encapsulation {information hiding) prevents clients from seeing its inside view, where the

behavior of the abstraction is implemented

© IETE

DE70/DCS56/DE122/DC106 OBJECT ORIENTED PROGRAMMING WITH C++ | JUN 2015

Absiraction uses in order to do some works easily. For example, vou have a abstract class
fruit. And fruit has some methods one of which has to be abstract. So vou should fill the
body of this methoed's body for vour each class who are subclass of this abstract class, The
purpose of it is that to implement method according to that class.

Abstraction is the process of hiding the details and exposing only the essential features of a
particular concept or object.

Encapsulation is the ability of an object to be a container (or capsule) for related properties
{ie. data variables) and methods (ie. functions), Programs written in older languages did
not enforce any property/methed relationship. This often resulted in side effects where
variables had their contents changed or reused in unexpected ways and “spaghetti' code
(branching into procedures from external points) that was difficult to unravel. understand
and maintain, Encapsulation is one of three fundamental principles within object oriented
approach.

Data hiding is the ability of objects to shield variables from external access. These private
variables can only be seen or modified by use of object accessor and mutator methods.
This permits wahdm checking at run time. Access to other object variables can be allowed
but with tight control on how it is done. Methods can also be c:ompletcly hidden from
external use. Those that are made visible externally can only be called by using the object's
front door (ie. there is no 'goto' branching concept).

Q.4 a. What does ‘this’ pointer stand for? What is the advantage of ‘this’ pointer? (4)

Answer:

Each time we creates a class instance in a program, C++ creates a special pointer
called this, which contains the address of the current object instance. Each time the program
invokes an instance method (e.g. a.init()), the compiler pre-assigns a special pointer
named 7his to point to the object instance.

The value of this pointer changes with different instance invocations. C++ recognizes the this
pointer only when a non-static member of the object instance is executing. The instances, in
turn, use the this pointer to access the different methods.

Every member function of a class has an implicitly defined constant pointer called this. The
type of this is the type of the class of which the function is member. It is initialized when a

member function is called to the address of the class instance for which the function was
called.

b. What is typecasting? What are explicit and implicit type conversions? Explain
your answer with a suitable example. (6)

Answer:

© IETE 3

DE70/DCS56/DE122/DC106 OBJECT ORIENTED PROGRAMMING WITH C++ | JUN 2015

Converting an expression of a given type into another type is known as type-casting.

Implicit conversions do not require any operator. They are automatically performed when a
value is copied to a compatible type. For example:

' short a=2000;
2 ‘int b

Here, the value of a has been promoted from short to int and we have not had to specify any
type-casting operator. This is known as a standard conversion. Standard conversions affect
fundamental data types, and allow conversions such as the conversions between numerical
types (short to int, int to float, double to int...), to or from bool, and some pointer conversions.
Some of these conversions may imply a loss of precision, which the compiler can signal with
a warning. This warning can be avoided with an explicit conversion.

Implicit conversions also include constructor or operator conversions, which affect classes
that include specific constructors or operator functions to perform conversions. For example:

| BT {}, P A

2 class B { public: B (A a) {} };

L Aa;
© B b=a;

Here, an implicit conversion happened between objects of class A and class B, because B has
a constructor that takes an object of class A as parameter. Therefore implicit conversions
from A to B are allowed.

i
C++ is a strong-typed language. Many conversions, specially those that imply a different

interpretation of the value, require an explicit conversion. We have already seen two
notations for explicit type conversion: functional and c-like casting:

! short a=2000;

2 lint b;

' b=(int)a; //c-like cast notation
4 b=int (a); //functional notation

The functionality of these explicit conversion operators is enough for most needs with
fundamental data types. However, these operators can be applied indiscriminately on
classes and pointers to classes, which can lead to code that while being syntactically
correct can cause runtime errors.

© IETE

DE70/DCS56/DE122/DC106 OBJECT ORIENTED PROGRAMMING WITH C++ | JUN 2015

¢. Explain the scope of private, public and protected member function. (6)

Answer:
The following table shows the access to members permitted by each modifier.
Access Levels |
Modifier Class Pac.kz.lgé.fSl.lbclass'Wo.rld

p:bi.ic : Y _Y v Y
;,;I’Ci.é':i\ﬂ:d Y Y B N
'Cll\a'i—‘ Y N “ N . N

Q.5 a. Which operators cannot be overloaded? Write steps to overload + operator so that
it can add two complex numbers.)

Answer:
In C++, following operators cannot be overloaded:

. (Member Access or Dot operator)

?: (Ternary or Conditional Operator)

:: (Scope Resolution Operator)

* (Pointer-to-member Operator)

sizeof (Object size Operator)

typeid (Object type Operator)

Refer text Book of remaining part of the question.

b. Write a program in C++ that display entered string into reverse order. t))

Answer:

Q.6 a. What is base class? How is it relevant in multiple inheritances? Does a
constructor/destructor also inherited from base class to its derived class? 8)

Answer:

b. What is the difference between :* and “::” operator? Explain the concept using a
suitable example. t))

Answer: Refer the scope section of Text Book.

Q.7 a. Define polymorphism. Write a program to demonstrate implementation of
polymorphism. ®

Answer: Refer to the farescribed text book.

© IETE 5

DE70/DCS56/DE122/DC106 OBJECT ORIENTED PROGRAMMING WITH C++ | JUN 2015

b. Explain the working of the following program code: t))
#include <iostream>
using namespace std;
double division(int a, int b)
{
if(b==0) {throw "Division by zero condition!";}return (a/b);
3
int main ()
{
int x =50;
inty=0;
double z = 0;
try {
z = division(x, y);
cout << z << endl;
} catch (const char* msg) { err << msg << endl;}

return 0;

}

Answer:
This 1s a program for exception handling when “divide by zero” situation arises.

Q.8 a. What is difference between opening a file with constructor function and with
open() function? Explain your answer with a suitable example. 3

Answer:

In case of constructor, the file can be accessed through methods defined in class
and from outside, it can be accessed according to the defined scope of the function and
data type (e.g. private, public and protected). However in case of through files opened
directly through open () function, it can be accessed from anywhere in the program.

A suitable example will complete the answer.

b. What is Standard Template Library? How is it different from the C++ Standard
Library? ®)

Answer:

© IETE 6

DE70/DCS56/DE122/DC106 OBJECT ORIENTED PROGRAMMING WITH C++ | JUN 2015

(b) The Standard Template Library, or STL, is a C++ library of container classes, algorithms,
and iterators; it provides many of the basic algorithms and data structures of computer
science. The STL is a generic library, meaning that its components are heavily
parameterized: almost every component in the STL is a template. You should make sure that
you understand how templates work in C++ before you use the STL.

One very important question to ask about any template function, not just about STL
algorithms, is what the set of types is that may correctly be substituted for the formal
template parameters. Clearly, for example, int* or double* may be substituted for find's
formal template parameter InputIterator. Equally clearly, int or double may not: find
uses the expression *first, and the dereference operator makes no sense for an object of
type int or of type double. The basic answer, then, is that find implicitly defines a set of
requirements on types, and that it may be instantiated with any type that satisfies those
requirements. Whatever type is substituted for InputIterator must provide certain
operations: it must be possible to compare two objects of that type for equality, it must be
possible to increment an object of that type, it must be possible to dereference an object of
that type to obtain the object that it points to, and so on.

rind isn't the only STL algorithm that has such a set of requirements; the arguments to
for_each and count, and other algorithms, must satisfy the same requirements. These
requirements are sufficiently important that we give them a name: we call such a set of type
requirements a concept, and we call this particular concept Input Iterator. We say that a
type conforms to a concept, or that it is a model of a concept, if it satisfies all of those
requirements. We say that int* is a model of Input Iterator because int* provides all of the
operations that are specified by the Input Iterator requirements.

Concepts are not a part of the C++ language; there is no way to declare a concept in a
program, or to declare that a particular type is a model of a concept. Nevertheless, concepts
are an extremely important part of the STL. Using concepts makes it possible to write
programs that cleanly separate interface from implementation: the author of f£ind only has to
consider the interface specified by the concept Input Iterator, rather than the
implementation of every possible type that conforms to that concept. Similarly, if you want to
use find, you need only to ensure that the arguments you pass to it are models of Input
Iterator. This is the reason why find and reverse can be used with 1ists, vectors, C
arrays, and many other types: programming in terms of concepts, rather than in terms of

© IETE 7

DE70/DCS56/DE122/DC106 OBJECT ORIENTED PROGRAMMING WITH C++ | JUN 2015

specific types, makes it possible to reuse software components and to combine components
together.

People learning C#+ for the first time do not know this distinction, and magmot notice small
language differences. The entire C++ Standard Library is the STL, as believed some
computer professionals. However there are features that were never part of the STL itself.
Most vocal proponents of "the STL", in contrast, know exactly what they mean by it and
refuse to believe that not everybody "gets it". Clearly, the term's usage is not uniform.

In addition, there are some STL-like libraries that are in fact implementations of the original
STL, not the C++ Standard Library. Until recently, STLPort was one of them (and even there,
the confusion abounds!).

Further, the C++ Standard does not contain the text "STL" anywhere, and some people
habitually employ phrases like "the STL is included in the C++ Standard Library", which is
plain incorrect.

Q.9 Write short note on any TWO of the followings: (8%2)

(a) Exception Handling
(b) Class template
(¢) I/O Streams and its handling

Answer:

(a) Exception handling is a mechanism that separates code that detects and handles exceptional
circumstances from the rest of your program. Note that an exceptional circumstance is not
necessarily an error.

When a function detects an exceptional situation, you represent this with an object. This
object is called an exception object. In order to deal with the exceptional situation you throw
the exception. This passes control, as well as the exception, to a designated block of code in a
direct or indirect caller of the function that threw the exception. This block of code is called a
handler. In a handler, you specify the types of exceptions that it may process. The C++ run
time, together with the generated code, will pass control to the first appropriate handler that is
able to process the exception thrown. When this happens, an exception is caught. A handler
may rethrow an exception so it can be caught by another handler.

The exception handling mechanism is made up of the following elements:
+ try blocks
« catch blocks
» throw expressions
« Exception specifications

© IETE 8

DE70/DCS56/DE122/DC106 OBJECT ORIENTED PROGRAMMING WITH C++ | JUN 2015

(b) The relationship between a class template and an individual class is like the
relationship between a class and an individual object. An individual class defines how
a group of objects can be constructed, while a class template defines how a group of

classes can be generated.

Note the distinction between the terms class template and template class:
Class template

is a template used to generate template classes. You cannot declare an object of a
class template.

Template class

is an instance of a class template.

A template definition is identical to any valid class definition that the template might
generate, except for the following:

e The clﬁss template deﬁmtlon is preceded by
where template-parameter~lzst is a comma-separated llst of one or more of the
following kinds of template parameters:
o type
o non-type
o template
e Types, variables, constants and objects within the class template can be declared
using the template parameters as well as explicit types (for example, int or char).

A class template can be declared without being defined by using an elaborated type
specifier. For example:

templateselass I class 1> class Key: ™
This reserves the name as a class template name. All template declarations for a class

template must have the same types and number of template arguments. Only one
template declaration containing the class definition is allowed.

© IETE 9

DE70/DCS56/DE122/DC106 OBJECT ORIENTED PROGRAMMING WITH C++ | JUN 2015

Note:
When you have nested template argument lists, you must have a separating space
between the > at the end of the inner list and the > at the end of the outer list.
Otherwise, there is an ambiguity between the extraction operator >> and two
template hst dehmlters =

Objects and function members of individual template classes can be accessed by any of
the techniques used to access ordinary class member objects and functions. Given a class
template:

(¢) One of the great strengths of C++ is its I/O system, IO Streams. As Bjarne Stroustrup says
in his book "The C++ Programming Language", "Designing and implementing a general
input/output facility for a programming language is notoriously difficult". He did an
excellent job, and the C++ [Ostreams library is part of the reason for C++'s success. 10
streams provide an incredibly flexible yet simple way to design the input/output routines
of any application.

[Ostreams can be used for a wide variety of data manipulations thanks to the following
features:

o A'stream'is internally nothing but a series of characters. The characters may be either

normal characters (char) or wide characters (wchar t). Streams provide you with a
universal character-based interface to any type of storage medium (for example, a

© IETE 10

DE70/DCS56/DE122/DC106 OBJECT ORIENTED PROGRAMMING WITH C++ | JUN 2015

tile), without requiring you to know the details of how to write to the storage medium.
Any object that can be written to one type of stream, can be written to all types of
streams. In other words, as long as an object has a stream representation, any storage
medium can accept objects with that stream representation.

e Streams work with built-in data types, and you can make user-defined types work
with streams by overloading the insertion operator (<<) to put objects into streams,
and the extraction operator (>>) to read objects from streams.

e The stream library.s unified approach makes it very friendly to use. Using a consistent
interface for outputting to the screen and sending files over a network makes life
easier. The programs below will show you what is possible.

The 10 stream class hierarchy is quite complicated, so rather than introduce you to the full
hierarchy at this point, I'll start with explaining the concepts of the design and show you
examples of streams in action. Once you are familiar with elements of the design and how to
apply those concepts to design a robust I/O system for your software, an understanding of
what belongs where in the hierarchy will come naturally.

TEXT BOOK

L. Object-oriented Programmeming with C++, Poornachandra Sarang, PHI, 2004

© IETE 11

