Q. 2 a. Draw the block diagram of digital communication system and explain the function of each block.

Answer:

Refer Page Numbers 4 \& 5. (Block diagram - 2, Explanation - 5)
b. A discrete memoryless source with source alphabet $\xi=\left[s_{0}, s_{1}, s_{2}\right]$ with the following probabilities:$p\left(s_{0}\right)=p_{0}=\frac{1}{4}, p\left(s_{1}\right)=p_{1}=\frac{1}{4}$ and $p\left(s_{2}\right)=p_{2}=\frac{1}{2}$. Then calculate the entropy of the discrete memoryless source.
Answer:
The Entropy of the discrete memoryless source is given by:

$$
\begin{aligned}
H(\xi) & =p_{0} \log _{2}\left(\frac{1}{p_{0}}\right)+p_{1} \log _{2}\left(\frac{1}{p_{1}}\right)+p_{2} \log _{2}\left(\frac{1}{p_{2}}\right) \\
& =\frac{1}{4} \log _{2}(4)+\frac{1}{4} \log _{2}(4)+\frac{1}{2} \log _{2}(2) \\
\text { ENTROPY } & =\frac{3}{2} \text { bits }
\end{aligned}
$$

c. Derive an expression for channel capacity of a discrete memoryless channel.
Answer:
Refer Page Number 35.
Q. 3 a. With the help of block diagrams, discuss the reconstruction of a message process from its samples.

Answer:

Refer Page Numbers from 143 to 146. (Block diagram - 3, Explanation - 7)
b. What is PAM? Explain briefly transmission bandwidth requirement of PAM.
Answer:
Refer Page Numbers 161 \& 162.
Q. 4 a. What is Delta Modulation? What is its main advantage over DPCM? With the help of block diagrams, explain the operation of DM Transmitter and DM Receiver.
Answer:
Refer Page Numbers from 203 to 206. (2+2+2+2+2)
b. Draw the basic elements of a PCM system and explain the function of each element briefly.
Answer:
Refer Page Numbers from 172 to 180.
Q. 5 a. Explain briefly the power spectra of discrete PAM signals.

Answer:
Refer Page Numbers 235 - 238. (3+3)
b. Construct the Manchester format for the binary sequence 0110100011.

Answer:
Refer Page Numbers 242.
c. What is the necessity of Eye Pattern? Explain its significance in data transmission system with neat illustrations.
Answer:
Refer Page Numbers 261 \& 262.
Q. 6 a. With the help of neat sketches, explain QPSK transmitter and

Answer:

Refer Page Numbers 284 - 286. (2+6)
b. Compare the M-ary digital modulation techniques, M-ary PSK, Mary QAM and M-ary FSK.

Answer:

Refer Page Numbers 324 \& 325.
c. List out the non-coherent binary modulation techniques.

Answer:
Refer Page Numbers from 300 to 306.
Q. 7 a. Explain the function of correlation receiver with the help of suitable block diagrams.
Answer:
Refer Page Numbers from 84 to 86.
b. What is meant by non-coherent receiver? Compare the differences between quadrature receiver using correlators and quadrature receiver using matched filters.
Answer:
Refer Page Numbers from 96 to 99. (2+6)
Q. 8 a. Explain Direct Sequence Spread Coherent Binary Phase Shift Keying system with the help of neat block diagrams.
Answer:
Refer Page Number 452. (Explanation - 4, Block diagram - 4)
b. A spread-spectrum communication system has the following parameters:-

Information bit duration, $\mathrm{T}_{\mathrm{b}}=\mathbf{4 . 0 9 5} \mathbf{~ m s}, \mathrm{PN}$ chip duration, $\mathrm{Tc}=1 \boldsymbol{\mu}$ and bit energy-to- noise density ratio $\left(\frac{E_{b}}{N_{0}}\right)$ is 10 . Then calculate:
(i) Processing gain
(ii) Jamming merging

Answer:

Given Data: Information bit duration, $\mathrm{T}_{\mathrm{b}}=4.095 \mathrm{~ms}, \mathrm{PN}$ chip duration, $\mathrm{Tc}=1 \mu \mathrm{~s}$ and bit energy-to- noise density ratio $\left(\frac{E_{b}}{N_{0}}\right)$ is 10.
(i) The Processing Gain can be calculated as: $P G=\frac{T_{b}}{T_{c}}=\frac{4.095 \mathrm{~ms}}{1 \mu s}=4095$. 2
(ii) $\quad(\text { Jamming Margin })_{\mathrm{dB}}=(\operatorname{Proces} \sin \text { gGain })_{d B}-10 \log _{10}\left(\frac{E_{b}}{N_{o}}\right)_{\min } 2$

$$
=10 \log _{10}(4095)-10 \log _{10}(10)=26.1 \mathrm{~dB}
$$

c. Draw the block diagram of maximum length sequence generator and explain briefly.
Answer:
Refer Page Numbers 446 \& 447. (Block diagram - 2, Explanation - 2)
Q. 9 Write short notes on any TWO of the following:-
(i) Light Wave Transmission
(ii) Digital Communications by Satellite
(iii) Multipath Suppression

Answer:

(i) Refer Page Numbers 225 \& 226.
(ii) Refer Page Numbers 354 \& 355.
(iii) Refer Page Numbers 468 \& 469.

TEXT BOOK

I. Digital Communications, Wiley Student Edition, Simon Haykin

