Q. 2 a. Evaluate $\operatorname{lt}_{x \rightarrow 0} \frac{e^{x} \sin x-x-x^{2}}{x^{2}+x \log (1-x)}$

Answer:

$$
\begin{align*}
& \operatorname{lt}_{x \rightarrow 0} \frac{e^{x} \sin x-x-x^{2}}{x^{2}+x \log (1-x)}=\operatorname{lt}_{x \rightarrow 0} \frac{\left[1+x+\frac{x^{2}}{2!}+\ldots . .\left[x-\frac{x^{3}}{3!}+\ldots .\right]-x-x^{2}\right. \text { [1 mare fer eos }}{x^{2}+x\left[-x-\frac{x^{2}}{2}-\ldots .\right]} \\
& \left.=\operatorname{lt}_{x \rightarrow 0} \frac{\left[x+x^{2}+\frac{x^{3}}{3} \ldots . .\right]-x-x^{2}}{x^{2}-\left[x^{2}+\frac{x^{3}}{2}+\ldots . .\left[\frac{x^{3}}{3}+\ldots .\right]\right.} \operatorname{lt}_{x \rightarrow 0}\left[-\frac{x^{3}}{2}-\ldots .\right]=-\frac{2}{3}\right] \tag{1}
\end{align*}
$$

b. Find the area enclosed by the curve $a^{2} x^{2}=y^{3}(2 a-y)$.

Answer:

The required area $A=2 \int_{0}^{2 a} x d y=\frac{2}{a} \int_{0}^{2 a} y \sqrt{y(2 a-y)} d y=\pi a^{2}$ (4)
Q. 3 a. Separate $\sin ^{-1}(\cos \theta+i \sin \theta)$ into real and imaginary parts.

Answer:
Let $\sin ^{-1}(\cos \theta+i \sin \theta)=x+i y$ (1. $\cos \theta+i \sin \theta=\sin (x+i y)$
$\cos \theta+i \sin \theta=\sin x \cosh y+i \cos x \sinh y, \therefore \cos \theta=\sin x \cosh y, \sin \theta=\cos x \sinh y$

Squaring and adding we get $1=\sin ^{2} x+\sinh ^{2} y \Rightarrow \cos ^{2} x=\sinh ^{2} y \Rightarrow \cos ^{2} x=\sin \theta$
$\therefore x=\cos ^{-1} \sqrt{\sin \theta}$ and $y=\log [\sqrt{\sin \theta}+\sqrt{(1+\sin \theta)}]$
b. Find the moment about the point $\mathrm{M}(-1,-2,3)$ of the force represented in magnitude And position by $\overrightarrow{A B}$ where the point A and B have the coordinates $(1,2,-3)$ and $(1,-2,3)$ respectively.

Answer:

$$
\begin{align*}
& \vec{F}=\overrightarrow{A B}=(\hat{i}-2 \hat{j}+3 \hat{k})-(\hat{i}+2 \hat{j}-3 \hat{k})=(-4 \hat{j}+6 \hat{k}) \tag{2}\\
& \vec{r}=\overrightarrow{M A}=(\hat{i}+2 \hat{j}-3 \hat{k})-(-\hat{i}-2 \hat{j}+3 \hat{k})=(2 \hat{i}+4 \hat{j}-6 \hat{k})
\end{align*}
$$

Moment $=\vec{r} \times \vec{F}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 0 & -4 & 6 \\ 2 & 4 & -6\end{array}\right|=(12 \hat{j}+8 \hat{k})$
Q. 4 a. A resistance of 100 ohms, an inductance of 0.5 henry are connected in a series with a battery of 20 volts. Find the current in the circuit as a function of time.

Answer:

By Kirchoff's first law, we have

$$
\begin{equation*}
R i+L \frac{d i}{d t}=E \Rightarrow \frac{d i}{d t}+\frac{R}{L} i=\frac{E}{L} \Rightarrow i=\frac{E}{R}\left[1-e^{\frac{-R}{L} t}\right] \tag{1}
\end{equation*}
$$

$\mathrm{R}=100$ ohms, $\mathrm{L}=0.5$ henry, $\mathrm{E}=20$ Volts, $i=\frac{1}{5}\left[1-e^{-200 t}\right]$
(1)
b. Find the Fourier series of the function $f(x)=\left\{\begin{array}{cc}x, & -\pi<x<0 \\ -x, & 0<x<\pi\end{array}\right.$

Answer:

Since $f(x)$ is an even function, hence $b_{n}=0$, (D)

$$
\begin{align*}
& a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x=\frac{2}{\pi}\left[\int_{0}^{\pi}(-x) d x\right]=-\pi \\
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi}-x \cos n x d x=\frac{2}{\pi n^{2}}\left[1-(-1)^{n}\right]=\left\{\begin{array}{cc}
0, & \text { nis even } \\
\frac{4}{\pi n^{2}} & \text { nis odd }
\end{array}\right. \\
& f(x)=-\frac{\pi}{2}+\frac{4}{\pi}\left[\frac{\cos x}{1^{2}}+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\ldots . .\right] \tag{1}
\end{align*}
$$

Q. 5 a. Find the Laplace transform of $f(t)=\left\{\begin{array}{cc}t, & 0<t<a \\ 2 a-t, & a<t<2 a\end{array}\right.$
if $f(t+2 a)=f(t)$

Answer:

The given function is periodic with period 2 a .

$$
\begin{aligned}
& \therefore L f(t)=\frac{1}{1-e^{-2 a s}} \int_{0}^{2 a} f(t) e^{-s t} \frac{d t}{2}=\frac{1}{1-e^{-2 a s}}\left[\int_{0}^{a} f(t) e^{-s t} d t+\int_{a}^{2 a} f(t) e^{-s t} d t\right] \\
& =\frac{1}{1-e^{-2 a s}}\left[\int_{0}^{a} t e^{-s t} d t+\int_{a}^{2 a}(2 a-t) e^{-s t} d t\right]=\frac{1}{s^{2}} \frac{1-e^{-a s}}{1+e^{-a s}} \\
& \text { (1) }
\end{aligned}
$$

b. Evaluate $L^{-1}\left(\frac{s}{\left(s^{2}+1\right)\left(s^{2}+4\right)}\right)$
(8)

Answer:

We know that $L^{-1}\left(\frac{s}{s^{2}+1}\right)=\cos x\left(C^{-1}\left(\frac{2}{s^{2}+2^{2}}\right)=\sin 2 x(1\right.$

$$
\begin{align*}
& L^{-1}\left(\frac{s}{\left(s^{2}+1\right)\left(s^{2}+4\right)}\right)=\frac{1}{2} L^{-1}\left(\frac{s}{\left(s^{2}+1\right)} \frac{2}{\left(s^{2}+4\right)}\right) \tag{1}\\
& =\frac{1}{2} \int_{0}^{t} \sin 2 x \cos (t-x) d x=\frac{1}{3}(\cos t-\cos 2 t)
\end{align*}
$$

Q. 6 a. Expand $\log _{e} x$ in powers of $(x-1)$ and hence evaluate $\log _{e} 1.1$ correct to 4 decimal places.

Answer:

$$
\text { Let } \begin{aligned}
f(x) & =\log _{e} x \\
f^{\prime}(x) & =\frac{1}{x}, \\
f^{\prime \prime}(x) & =-\frac{1}{x^{2}},
\end{aligned}
$$

$$
\begin{gathered}
f(1)=0 \\
f^{\prime}(1)=1 \\
f^{\prime \prime}(1)=-1
\end{gathered}
$$

$$
\begin{equation*}
f^{\prime \prime \prime}(x)=\frac{2}{x^{3}}, \tag{1}
\end{equation*}
$$

$$
f^{\prime \prime \prime}(1)=2
$$

$$
\begin{equation*}
f^{i v}(x)=-\frac{6}{x^{4}} \tag{1}
\end{equation*}
$$

$$
f^{i v}(0)=-6
$$

etc.

Substituting these values in the Taylor's series

$$
\begin{equation*}
f(x)=f(1)+(x-1) f^{\prime}(1)+\frac{(x-1)^{2}}{2!} f^{\prime \prime}(1)+\frac{(x-1)^{3}}{3!} f^{\prime \prime \prime}(1)+\ldots \tag{1}
\end{equation*}
$$

we get
Now putting $x=1.1$, so that $x-1=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\ldots$
Now putting $x=1.1$, so that $x-1=0.1$, we have

$$
\begin{aligned}
\log (1.1) & =1.1-\frac{1}{2}(0.1)^{2}+\frac{1}{3}(0.1)^{3}-\frac{1}{4}(0.1)^{4}+\ldots \\
& =0.1-0.005+0.0003-0.00002+\ldots=0.0953
\end{aligned}
$$

\square
b. Using Laplace transforms evaluate the integral $\int_{0}^{\infty} \frac{\sin m t}{t} d t$ if $m>0$

Answer:

$$
\begin{aligned}
& L(\sin m t)=\frac{m}{s^{2}+m^{2}} \Rightarrow f(s) d L\left(\frac{\sin m t}{t}\right)=\int_{s}^{\infty} f(s) d s=\int_{s}^{\infty} \frac{m}{s^{2}+m^{2}} d s=\tan ^{-1}\left(\frac{s}{m}\right)_{s}^{\infty} \\
& \int_{0}^{\infty} e^{-s t} \frac{\sin m t}{t} d t=\frac{\pi}{2} \tan ^{-1}\left(\frac{s}{m}\right) \text { taking limit as } s \text { tends to 0, we get } \\
& \int_{0}^{\infty} \frac{\sin m t}{t} d t=\frac{\pi}{2} \text { if } m>0,-\frac{\pi}{2} \text { if } m<0
\end{aligned}
$$

Q. 7 a. Solve by Laplace transform $\frac{d^{2} x}{d t^{2}}+9 x=\cos 2 t$, if $x(0)=1, x\left(\frac{\pi}{2}\right)=-1$

Answer:

Since $x^{\prime}(0)$ is not given, we assume $x^{\prime}(0)=0$.
Taking the Laplace transforms of both sides of the equation, we have

01

$$
\begin{aligned}
& L\left(x^{\prime}\right)+9 L(x)=L(\cos 2 t) L . e,\left[g^{2} x-8 x(0)-x^{\prime}(0)\right]+9 \overline{\tilde{r}}=\frac{8}{8^{8}+4}(1) \\
& \left(s^{2}+9\right) \bar{x}=s+a+\frac{s}{s^{2}+4} \text { or } \overline{\bar{x}}-\frac{g+a}{s^{2}+9}+\frac{s}{\left(s^{2}+4\right)\left(s^{2}+9\right)}(2) \\
& \bar{y}-\frac{a}{s^{2}+4}+\frac{1}{5} \cdot \frac{s}{s+4}+\frac{4}{5}, \frac{s}{s^{2}+9}(2) \\
& \text { On inversion, we get } \quad x=\frac{a}{3} \sin 3 t+\frac{1}{5} \cos 2 t+\frac{4}{5} \cos 3 t \text { (}
\end{aligned}
$$

When $t-\pi / 2,-1=-\frac{a}{3}-\frac{1}{5}$ or $\frac{a}{3}=\frac{4}{5}$

$$
\left[\because\left(\frac{\pi}{2}\right)=-1\right]
$$

Hence the solution is $t=\frac{1}{5}(\cos 2 t+4 \sin 3 t+4 \cos 3 t) .(1)$
b. Solve $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=\left(1-e^{x}\right)^{2}$

Answer:

Given equation in symbolic form is $\left(D^{2}+D+1\right) y=\left(1-e^{x}\right)^{2}$
(i) To find C.F.

Its A.E. is $D^{2}+D+1=0, \quad \therefore \quad D=\frac{1}{2}(-1+\sqrt{3 i})$
Thus C.F. $=e^{-x / 2}\left(c_{1} \cos \frac{\sqrt{3}}{2} x+c_{2} \sin \frac{\sqrt{3}}{2} x\right)$
(ii) To find P.I.

$$
\begin{aligned}
\text { P.I. } & =\frac{1}{D^{2}+D+1}\left(1-2 e^{x}+e^{2 x}\right)=\frac{1}{D^{2}+D+1}\left(e^{0 x}-2 e^{x}+e^{2 x}\right) \\
& =\frac{1}{0^{2}+0+1} e^{0 x}-2 \cdot \frac{1}{1^{2}+1+1} e^{x}+\frac{1}{2^{2}+2+1} e^{2 x}=1-\frac{2}{3} e^{x}+\frac{e^{2 x}}{7}
\end{aligned}
$$

(iii) Hence the C.S. is $y=e^{-x / 2}\left(c_{1} \cos \frac{\sqrt{3}}{2} x+c_{2} \sin \frac{\sqrt{3}}{2} x\right)+1-\frac{2}{3} e^{x}+\frac{e^{2 x}}{7}$.
Q. 8 a. Given that $f(x)=e^{-x}$ for $-l<x<l$ find the Fourier expansion of $\mathrm{f}(\mathrm{x})$.

Answer:

$$
\begin{align*}
& \text { Let } e^{-x}=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{l}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \\
& a_{0}=\frac{1}{l} \int_{-l}^{l} f(x) d x=\frac{1}{l} \int_{-1}^{l} e^{-x} d x=\frac{2 \sinh l}{l} \\
& a_{n}=\frac{1}{l} \int_{-1}^{l} e^{-x} \cos \frac{n \pi x}{l} d x=\frac{2 l(-1)^{n} \sinh l}{l^{2}+(n \pi)^{2}} \\
& b_{n}=\frac{1}{l} \int_{-l}^{l} e^{-x} \sin \frac{n \pi x}{l} d x=\frac{2 n \pi(-1)^{n} \sinh l}{l^{2}+(n \pi)^{2}} \\
& e^{-x}=\frac{\sinh l}{l}+\sum_{n=1}^{\infty} \frac{2 l(-1)^{n} \sinh l}{l^{2}+(n \pi)^{2}} \cos \frac{n \pi x}{l}+\sum_{n=1}^{\infty} \frac{2 n \pi(-1)^{n} \sinh l}{l^{2}+(n \pi)^{2}} \sin \frac{n \pi x}{l} \tag{1}
\end{align*}
$$

b. Two circuits of impedances $1+2 \mathrm{j}$ ohms and $2+3 \mathrm{j}$ ohms are connected in parallel and a.c. voltage of 50 volts is applied across the parallel combination. Calculate the magnitude of the current as well as power factor for each circuit and the magnitude of the total current for the parallel combination and its power factor.

Answer:

$$
\begin{equation*}
z_{1}=1+2 j, z_{2}=2+3 j, \quad i_{1}=\frac{V}{z_{1}}=\frac{50}{1+2 j}=10-20 j\left(i_{2}=\frac{V}{z_{2}}=\frac{50}{2+3 j}=\frac{100}{13}-\frac{150}{13} j\right. \tag{1}
\end{equation*}
$$

Magnitude of $i_{1}=\sqrt{100+400}=10 \sqrt{5}$ ampere . Magnitude of $i_{2}=\frac{50}{13} \sqrt{13}$ ampere

$$
\begin{align*}
& \text { Power factor }=\frac{R_{1}}{\left|z_{1}\right|}=\frac{1}{\sqrt{5}} \cdot \text { Power factor } \frac{R_{2}}{\left|z_{2}\right|}=\frac{2}{\sqrt{13}} \\
& i=i_{1}+i_{2}=\frac{230-410 j}{13} \text { Magnitude }=\frac{10}{13} \sqrt{529+1681}=\frac{110}{13} \sqrt{10} \tag{1}
\end{align*}
$$

Q. 9 a. IF $|\vec{A}+\vec{B}|=50,|\vec{A}-\vec{B}|=30,|\vec{B}|=10$, find $|\vec{A}|$

Answer:
$|\vec{A}+\vec{B}|=50,|\vec{A}+\vec{B}|^{2}=2500 \stackrel{〕}{\Rightarrow}(\vec{A}+\vec{B}) \cdot(\vec{A}+\vec{B})=2500 \Rightarrow|\vec{A}|^{2}+|\vec{B}|^{2}+2|\vec{A}||\vec{B}| \cos \theta=2500$
$|\vec{A}-\vec{B}|=30,|\vec{A}-\vec{B}|^{2}=900 \Rightarrow(\vec{A}-\vec{B}) \cdot(\vec{A}-\vec{B})=900 \Rightarrow|\vec{A}|^{2}+|\vec{B}|^{2}-2|\vec{A}||\vec{B}| \cos \theta=900$
Adding we get,

$$
\begin{equation*}
|\vec{A}|^{2}+|\vec{B}|^{2}=1700 \Rightarrow|\vec{A}|^{2}+(10)^{2}=1700 \Rightarrow|\vec{A}|=40 \tag{2}
\end{equation*}
$$

b. Evaluate $\int_{0}^{a} \frac{x^{n}}{\sqrt{a^{2}-x^{2}}} d x$ then find the value of $\int_{0}^{1} x^{n} \sin ^{-1} x d x$

Answer:

$$
\begin{align*}
& \int_{0}^{a} \frac{x^{n}}{\sqrt{a^{2}-x^{2}}} d x=a^{n} \int_{0}^{\pi / 2} \sin ^{n} \theta d \theta, x=a \sin \theta \\
& =\left\{\begin{array}{l}
\frac{(n-1)(n-3) \ldots .2}{n(n-2) \ldots .3}, \quad n=\text { odd } \\
\frac{(n-1)(n-3) \ldots .1}{n(n-2) \ldots .2} \frac{\pi}{2}, \quad n=\text { even } \\
\int_{0}^{1} x^{n} \sin ^{-1} x d x=\left(\sin ^{-1} x \frac{x^{n+1}}{n+1}\right)_{0}^{1}-\int_{0}^{1} \frac{x^{n+1}}{(n+1) \sqrt{1-x^{2}}} d x
\end{array}\right. \\
& \quad=\frac{1}{n+1}\left\{\begin{array}{l}
\frac{\pi}{2}-\frac{n(n-2)(n-4) \ldots .2}{(n+1)(n-1)(n-3) \ldots .3}, \quad n=\text { even } \\
\frac{\pi}{2}-\frac{n(n-2)(n-4) \ldots .1}{(n+1)(n-1)(n-3) \ldots .2} \frac{\pi}{2}, \quad n=\text { odd }
\end{array}\right. \tag{2}
\end{align*}
$$

TEXT BOOKS

1. Engineering Mathematics -Dr. B.S.Grewal, 12th edition 2007, Khanna publishers, Delhi
2. Engineering Mathematics - H.K.Dass, S. Chand and Company Ltd, 13th Revised Edition 2007, New Delhi
3. A Text book of Engineering Mathematics - N.P. Bali and Manish Goyal, 7th Edition 2007, Laxmi Publication(P) Ltd
