Q. 2 a. Differentiate the following functions:
(i) $x^{n} e^{x} \log _{e} x$
(ii) $\operatorname{cosec}\left(\frac{x^{2}+1}{x^{2}-1}\right)+\cos ^{-1}\left(\frac{x^{2}-1}{x^{2}+1}\right)$

Answer: (i)
Let $y=x^{n} \cdot e^{x} \cdot \log a^{x}$

$$
=x^{n} \cdot e^{x} \cdot \frac{\log x}{\log a}
$$

Differentrat ing both sides crir-to ' x ', then

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{\log a} \frac{d}{d x}\left[x^{n} \cdot e^{x} \log x\right] \\
& =\frac{1}{\log a}\left[x^{n} \log x \frac{d}{d x}\left(e^{x}\right)+x^{n} e^{x} \frac{d}{d x}(\log x)\right. \\
& \left.+e^{x} \log x \frac{d}{d x}\left(x^{n}\right)\right] \\
& =\frac{1}{\log a}\left[x^{n} \log x \cdot e^{x}+\frac{x^{n} e^{x}}{x}+e^{x} \lg x \cdot n x^{n-1}\right. \\
& =\frac{1}{\log a} \cdot e^{x} x^{n-1}[x \log x+1+n \log x]
\end{aligned}
$$

Fence, $\frac{d y}{d n}=\frac{e^{x} x^{n-1}}{\log a}[x \log x+n \log x+1]$
(ii)

Let $y=\operatorname{cosec}^{-1}\left\{\frac{x^{2}+1}{x^{2}-1}\right\}+\cos ^{-1}\left(\frac{x^{2}-1}{x^{2}+1}\right)$

$$
=\sin ^{-1}\left(\frac{x^{2}-1}{x^{2}+1}\right)+\cos ^{+}\left(\frac{x^{2}-1}{x^{2}+1}\right)
$$

$$
\therefore \operatorname{cosec}^{-1} x=\sin +\left(\frac{1}{x}\right)
$$

$=\frac{\pi}{2} \quad \because \sin ^{-1} x+\cos ^{7} x=\frac{\pi}{2}$ or $y=\frac{\pi}{n} \Rightarrow \frac{d y}{d x}=0$.
b. If $y=\sin \left(m \sin ^{-1} x\right)$, then prove that $\left(1-x^{2}\right) y_{n+1}=(2 n+1) x y_{n+1}+\left(n^{2}-m^{2}\right) y_{n}$. (8)

Answer:

$$
\begin{aligned}
& \text { Let } y=\sin \left(\sin \sin ^{-1} x\right) \\
& y_{1}=\cos \left(\sin -\sin t_{x}\right) \cdot \frac{m}{\sqrt{1-x^{2}}} \\
& \text { crose multiplyms } \\
& \sqrt{1-x^{2}} y_{1}=m \cos \left(m \sin f_{x}\right) \\
& \text { squaiiony on bo the sidel } \\
& \left(1-x^{2}\right) y^{2}=m^{2} \text { Gy } 2 \text { (msint } x \text {) } \\
& =m^{2} \sqrt{1-\sin ^{2}\left(m-\sin ^{2} x\right)} \\
& \left(1-x^{2}\right) y_{1}{ }^{2}=m^{2}\left(1-y^{2}\right) \\
& \text { Hgain, ditf. w-r-zo ix, } \\
& \left(1-x^{2}\right) 2 y_{1} y_{2}-2 x y_{1}^{2}=m^{2}\left(-2 y y_{1}\right) \\
& 2 y_{1}\left[\left(1-x^{2}\right) x-x y+m^{2} y\right]=0
\end{aligned}
$$

$$
\begin{align*}
& 2 y \neq 0 \\
& \left(1-x^{2}\right) y_{z}-x y+m^{2} y=0 \\
& \text { Applyhy Leibnitzlstheorem for ntime } \\
& \text { differentiactor. } \\
& {\left[\left(1-x^{2}\right) y_{x}+2+n c_{1}(-2 x) y_{x+1}+n c_{2}(-2) y_{n}\right]-[} \\
& \left.x y_{n+1}+n G_{1} \text { (1) } y_{n}\right]+m^{2} y_{n}=0 \\
& \Rightarrow\left(1-x^{2}\right) y_{n+2}-2 n x y m+1-n(n-1) y_{m}-x y m+1 \\
& -x y n+m^{2} y n=0 \\
& \Rightarrow\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{m+1}-\left(n^{2}-m^{2}\right) y_{m}=0 \\
& \text { a. } \int \frac{\sin x}{\sin (x-a)} d x \tag{8}
\end{align*}
$$

Answer:

$$
\begin{aligned}
& \int \frac{\sin x}{\sin (x-a)} d x=\int \frac{\sin [(x-a)+a]}{\sin (x-a)} d x \\
& =\int \frac{\sin (x-a) \cos a+\cos (x-a) \sin a}{\sin (x-a)} d x \\
& =\int \operatorname{ars} a \operatorname{dx}+\sin a \int \frac{\cos (x-a)}{\sin (x-a)} d x \\
& =x \cos a+\sin a \text { log } \sin (x-a) \\
& \therefore \int \frac{\sin x}{\sin (x-a)} d x=x \cos a+\sin a \log \sin (x-a)+c \\
& \text { b. } \int_{0}^{\frac{\pi}{2}} \cos ^{7} x d x
\end{aligned}
$$

Answer:

$$
\begin{aligned}
& \text { hel } I=\int_{0}^{\frac{\pi}{2}} \cos 7 x d x \\
& =\int_{0}^{\frac{\pi}{2}} \cos ^{6} x \cdot \cos x d x \\
& =\int_{0}^{\frac{\pi}{2}}\left(\cos ^{2} x\right)^{3} \cdot \cos x d x \\
& =\int_{0}^{\frac{\pi}{2}}\left(1-\sin ^{2} x\right)^{3} \cos x d x \\
& \text { Rut sim } x=z \text {, } \cos x d n=d t \\
& \text { when } x=0, t=0 \text {, when } x=\pi / 2 \\
& I=\int_{0}^{1}\left(1-t^{2}\right)^{3} d t \\
& =\int_{0}^{1}\left\{1-t^{6}-3 z^{2}\left(1-z^{2}\right)\right\} d t \\
& =\int_{0}^{1}\left(1-z^{6}-3 t^{2}+3 z^{4}\right) d t \\
& =\left[z-\frac{t^{7}}{7}-\frac{3 t^{3}}{3}+\frac{3 t^{5}}{3}\right]^{1} \\
& =1-\frac{1}{7}-1+\frac{3}{5} \\
& =\frac{21-5}{35}=\frac{16}{35} \\
& \therefore \int_{0}^{\frac{\pi}{2}} \cos 7 x d x=\frac{16}{35}
\end{aligned}
$$

Q. 4 a. Prove that the inverse of a square matrix, if it exists, is unique. (8)

Answer:

Let A be a non-singular mathire, then A is invertìble. Let B and C betho inversemathix of A, then by defsonition of inverse

$$
\begin{align*}
& A B=B A=I \tag{i}\\
& A C=C A=I
\end{align*}
$$

and
Now

$$
\begin{align*}
B & =B I \tag{iij}\\
& =B(A C) \quad \text { fom (ii) } \\
& =(B A) \subset \quad(\because \text { matrix multiflicecteron } \\
& =I C \quad \text { ussing }(i)
\end{align*}
$$

Hence, the invelese of non-simperlar mathix is cmique.
b. Find the adjoint of the matrix A, where

$$
\mathbf{A}=\left[\begin{array}{lrr}
1 & -1 & 2 \tag{8}\\
2 & 3 & 5 \\
-2 & 0 & 1
\end{array}\right]
$$

Answer:

$$
\text { Hehe } A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
2 & 3 & 5 \\
-2 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

$$
\text { and }|A|=\left|\begin{array}{ccc}
1 & -1 & 2 \\
2 & 3 & 5 \\
-2 & 0 & 1
\end{array}\right|
$$

Hene $A_{11}=\left|\begin{array}{ll}3 & 5 \\ 0 & 1\end{array}\right|=3, A_{12}=-\left|\begin{array}{cc}2 & 5 \\ -2 & 1\end{array}\right|=-12, \quad A_{13}=\left|\begin{array}{cc}2 & 3 \\ -2 & 0\end{array}\right|=6$

$$
A_{21}=\left|\begin{array}{cc}
-1 & 2 \\
0 & 1
\end{array}\right|=1, A_{22}=\left|\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right|=5
$$

$$
A_{23}=-\left|\begin{array}{cc}
1 & -1 \\
-2 & 0
\end{array}\right|=2
$$

$$
A_{31}=\left|\begin{array}{cc}
-1 & 2 \\
3 & 5
\end{array}\right|=-11, A_{32}=-\left|\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right|=-1 \quad A_{33}=\left|\begin{array}{cc}
1 & -1 \\
2 & 3
\end{array}\right|=5
$$

$$
\begin{aligned}
& \therefore \quad \operatorname{del} \quad A=\left|\begin{array}{lll}
A_{11} & A_{21} & A_{3} \\
A_{12} & A_{2} & A_{32} \\
A_{3} & A_{2} 3 & A_{33}
\end{array}\right| \\
& =\left[\begin{array}{c}
3 \\
-12 \\
6
\end{array}\right. \\
& \begin{array}{l}
1 \\
5 \\
2
\end{array} \\
& \left.\begin{array}{c}
-11 \\
-1 \\
5
\end{array}\right] \\
& \text { rime, } \quad \operatorname{ady} A=\left|\begin{array}{ccc}
3 & 1 & -11 \\
-12 & 5 & -1 \\
6 & 2 & 5
\end{array}\right|
\end{aligned}
$$

Q. 5 a. How many arrangements can be made with the letters of the word MATHEMATICS? In how many of them vowels are together?
Answer:
Mene, 11 letters ane in the word MATHEMATICS in
Which the he ane tho A^{\prime} 's and two Dis and the ane T' and ale other ane distinct, so
Required number of arrangmaients one

$$
\frac{11!}{2!\times 2!\times 2!}=4989600
$$

there ane 4 vowels ie. A, E, A, I.
corssiduing there four vowels as one letter we have o letters (m, T, H, m, T, C, s and one letter obtained by combining all vowels) ont of which m occurs thrice, Toccurs thrice and hest all different. There os letters can be arranged in $\frac{8!}{2!\times 2!}$ mays

But the fores Mouredes (A,E, A, I) Gem be put together om $\frac{4!}{2!}$ rays Hence total no. of aktanpmenets in which vowels ane alurays together

$$
\begin{aligned}
\frac{8!}{2!\times 2!} \times \frac{4!}{2!}= & 10080 \times 12 \\
& =120960
\end{aligned}
$$

b. Find the middle terms in the expansion of $\left(3 x-\frac{x^{3}}{6}\right)^{7}$.

Answer:
HW ice the expression is

$$
\left(3 x-\frac{x^{3}}{6}\right)^{7} \text {, ie } n=7 \text {, which is }
$$

an add numbers
so $\left(\frac{7+1}{2}\right)^{\text {th }}$ and $\left(\frac{7+1}{2}+1\right)^{\text {th }}$ ie $4^{\text {th }}$ and $5^{\text {th }}$ term ane tun o middle terms

$$
\text { How } \begin{aligned}
T_{4}=T_{3+1} & =7 c_{3}(3 x)^{7-3}\left(-\frac{x^{3}}{6}\right)^{3} \\
& =(-1)^{3} 7 c_{3}(3 x)^{4}\left(\frac{x^{3}}{6}\right)^{3} \\
& =-35 \times 81 x^{4} \times \frac{x^{9}}{216} \\
& =-\frac{105 x^{13}}{8}
\end{aligned}
$$

and

$$
\begin{aligned}
T_{5}=T_{4}+1 & =7 C_{4}(3 x)^{7-4}\left(-\frac{x^{3}}{6}\right)^{4} \\
& =7 C_{4}(3 x)^{3}\left(-\frac{x^{3}}{6}\right)^{4} \\
& =35 \times 27 x^{3} \times \frac{x^{12}}{1296}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hence, the risidedle tesmis ache } \\
& \qquad \frac{105}{8} x^{\prime} 3 \text { and } \frac{35 x^{15}}{48}
\end{aligned}
$$

Q. 6 a. Find the equation of the ellipse, whose foci and eccentricity are

$$
\begin{equation*}
(\pm 2,0) \text { and } \frac{1}{2} \tag{8}
\end{equation*}
$$

Answer:
Let

$$
\begin{aligned}
& \text { the equation of the ellipse be } \\
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \text {, the coordinates of }
\end{aligned}
$$

Foci ane $(+a e, 0)$
$\therefore a c=2 \Rightarrow a \times \frac{1}{2}=2 \quad\left(\because c=\frac{1}{2}\right)$
Now $b^{2}=a^{2}\left(1-e^{2}\right)$

$$
=16\left(1-\frac{1}{4}\right)=12
$$

rene, the equaticen of the ellipse is

$$
\frac{x^{2}}{16}+\frac{y_{2}}{12}=1
$$

b. Find the equation to the circle, which passes through the point $(-2,4)$ and through the points in which the circle $x^{2}+y^{2}-2 x-6 y+6=0$ is cut by the line $3 x+2 y-5=0$.
Answer:

Let $h=3 x+2 y-5=0$ be the Equation of and $S=x^{2}+y^{2}-2 x-6 y+6=0$ be the eqnection of circle. Therefore the equation of the requited circle is

$$
S+\sqrt{L}=0 \text {, ie. }
$$

$$
x^{2}+y^{2}-2 x-6 y+6+d(3 x+2 y-5)=0
$$

This passes through the point $(-2,4)$ there pore,

$$
\begin{gathered}
4+16+4-24+6+d(-6+8-5)=0 \\
6-3 d=0 \Rightarrow d=2
\end{gathered}
$$

on putting $c=2$ in (i), we set

$$
\begin{aligned}
& x^{2}+y^{2}-2 x-6 y+6+2(3 x+2 y-5)=0 \\
& \Rightarrow x^{2}+y^{2}+4 x-2 y-4=0
\end{aligned}
$$

which is the equation of the required circe.
Q. 7 a. Find the equation of the line which passes through the point $(3,4)$ and the sum of its intercepts on the axes is 14 .

Answer:

Let the equation of the line are

$$
\begin{equation*}
\frac{x}{a}+\frac{y}{b}=1 \tag{i}
\end{equation*}
$$

Egration (i) passes through $(3,4)$, then to e

$$
\begin{equation*}
\frac{3}{a}+\frac{4}{b}=1 \tag{ii}
\end{equation*}
$$

it isgiven the at $a+b=14 \Rightarrow b=14-a$ putting the nates of b in (ii), we set

$$
\begin{aligned}
\frac{3}{a}+\frac{4}{14-a}=1 \Rightarrow & a^{2}-13 a+42=0 \\
& \Rightarrow(a-7)(a-6)=0
\end{aligned}
$$

when $a=6, b=8 \quad a=6,7$
When $a=7 \quad b=7 \Rightarrow$ on putting in (i), wo set
$\frac{x}{7}+\frac{y}{7}=1$ and $\frac{x}{6}+\frac{y}{8}=1$
$\Rightarrow x+y=7 ; \quad 4 x+3 y=84$. Ave.
b. Find the area of a triangle whose vertices are $A(3,2), B(11,8)$ and $C(8,12)$.

Answer:

$$
\begin{aligned}
& \text { Let } \left.\begin{array}{rl}
A & =\left(x_{1}, x_{1}\right)=(3,2) \\
\text { and } C & =\left(x_{2}, y_{2}\right)=(11,8) \\
\text { and } & =\left(x_{3}, y_{3}\right)=(8,12) \text {, them }
\end{array} \text {, } 8 \text {, } 12\right)
\end{aligned}
$$

Areaof $\triangle A B C=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+\right.$ $\left.x_{3}\left(y_{1}-y_{2}\right)\right]$

$$
=\frac{1}{2}[3(8-12)+11(12-2)+8(2-8)]
$$

$$
=\frac{1}{2}[3 x-4+11 \times 8+8 x]
$$

$$
=-\frac{1}{2}[-12+1400-48]
$$

$$
=\frac{1}{2}[110-60)
$$

$$
\frac{1}{2}[50]=25 \text { ave. }
$$

Q. 8 a. Find the differential equation of all circles in $x y$ plane.
(8)

Answer:
we known that the genet al Equation of any circle in the $x-y$ plane is

$$
\begin{equation*}
x^{2}+y^{2}+2 g x+2 f y+c=0 \tag{i}
\end{equation*}
$$

where $g_{1} f$ and c ane aubiticany constant.
Biff. (i) w-r .to ' x ' for three timmesthen

$$
\begin{align*}
& 2 x+2 y y^{\prime}+2 y+2 f y^{\prime}=0 \\
& \text { or } x+y y^{\prime}+g+f y^{\prime}=0 \tag{ii}
\end{align*}
$$

Again,
and

$$
\begin{align*}
& 1+y y^{\prime \prime}+y^{\prime 2}+f y^{\prime \prime}=0 \\
& y y^{\prime \prime \prime}+y^{\prime} y^{\prime \prime}+2 y^{\prime} y^{\prime \prime}+f y^{\prime \prime \prime}=0 \\
& \text { or } y y^{\prime \prime \prime}+3 y^{\prime} y^{\prime \prime}+f y^{\prime \prime \prime}=0 \tag{iv}
\end{align*}
$$

on elimimaturg f btw (3) and (4). (4) by y ${ }^{\prime \prime}$ and substa act (4) from (3), we set

$$
\begin{aligned}
& y^{\prime \prime \prime}+y y^{\prime \prime} y^{\prime \prime \prime}+y^{\prime 2} y^{\prime \prime \prime}-y y^{\prime \prime} y^{\prime \prime \prime}-3 y^{\prime \prime} y^{\prime \prime} \\
& y^{\prime \prime}\left(1+y^{\prime 2}\right)-y^{\prime \prime 2}=0 \\
\Rightarrow & {\left[1+\left(\frac{d y}{d x}\right)^{2}\right] \frac{d^{3} y}{d x^{3}}-3 \frac{d y}{d x} \cdot\left(\frac{d^{2} y}{d x^{2}}\right)^{2}=0 }
\end{aligned}
$$

which is the hequirhed differential Equatercin
b. Solve the differential equation $\frac{d y}{d x}+\frac{1+\cos 2 y}{1-\cos 2 x}=0$.
Q. 9 a. Prove that $\cos 80^{\circ} \cos 60^{\circ} \cos 40^{\circ} \cos 20^{\circ}=\frac{1}{16}$

Answer:

$$
\begin{aligned}
& \text { Heane } \cos 30^{\circ} \cos \cos ^{\circ} \cos 40^{\circ} \cos 20^{\circ}=\frac{1}{16} \\
& \text { 1.M.s cos } 80^{\circ} \text { Conko cossuo cos } 20^{\circ} \\
& =\frac{1}{2}\left[\cos 20^{\circ} \text { cos } 40^{\circ} \text { cis } 80^{\circ}\right] \\
& =\frac{1}{2}\left[\cos A \cos 2 A \cos 2^{2} A\right] \\
& \text { whene } A=30^{\circ} \\
& =\frac{1}{2}\left[\frac{s, m x^{3} A}{2^{3} \sin A}\right] \\
& =\frac{1}{16}\left[\frac{\sin \Delta A}{8, h}\right]=\frac{1}{16}\left(\frac{(s, n}{\sin 20^{\circ}}\right) \\
& =\frac{1}{16} \frac{\sin (180-20}{\sin } \\
& =\frac{1}{16}=\frac{\sin 20^{\circ}}{20}=\frac{1}{16}=\text { 且 }=\frac{1}{2}
\end{aligned}
$$

b. If $A+B+C=\pi$, Prove that $\sin 2 \mathrm{~A}+\sin 2 \mathrm{~B}+\sin 2 \mathrm{C}=4 \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}$

Answer:

$$
\begin{aligned}
& \sin 2 A+\sin 2 B+\sin 2 C=4 \sin A \operatorname{Bin}^{2} \sin \sin C \\
& \text { Here } \angle A+\angle B+\angle C=\pi \\
& \text { L.H.S } \\
& \sin 2 A+\sin 2 B+\sin 2 C \\
& =(\sin 2 A+\cos 2 B)+\sin 2 C \\
& =\frac{2 \sin \left(\frac{2 A+2 x}{2}\right.}{2} \cos \left(\frac{2 A-2 B}{2}\right)+\sin 2 C \\
& =2 \sin (A+B) \cos (A-B)+\sin 2 C \\
& =2 \sin (\pi-C) \cos (A-B)+\sin 2 C \\
& \because A+B=\pi-C \\
& =2 \sin C \cos (A-B)+2 \sin C \cos C \\
& =2 \sin c[\cos (A-B)-\cos \{\dot{n}-(A+B)\}] \\
& =2 \sin c[\cos (A-B)-\cos (A+B)] \\
& =2 \sin C[(\cos A \cos B+\sin A \sin B)-C \\
& \cos A \sin B-\sin A \sin B)] \\
& =2 \sin C[\cos A \cos B+\sin A \sin B- \\
& \cos A \cos B+\sin A \sin B) \\
& z 2 \sin C \cdot 2 \sin A \sin B \\
& =4 \sin A \sin B \sin C
\end{aligned}
$$

TEXT BOOKS

1. Applied Mathematics for Polytechnics, H.K. Dass, $8^{\text {th }}$ Edition, CBS Publishers \& Distributors.
2. A Text book of Comprehensive Mathematics Class XI, Parmanand Gupta , Laxmi Publications (P) Ltd, New Delhi.
3. Engineering Mathematics, HK Dass, S Chand and Company Ltd, $13{ }^{\text {th }}$ Edition, New Delhi
