Q. 2 a. From the definition of Laplace transform find the Laplace transform of $x(t)=t$.

Answer :

$X(s)=\int_{0}^{\infty} x(t) e^{-s t} d t$
$L[t]=\int_{0}^{\infty} t e^{-s t} d t=\left.t \frac{e^{-s t}}{-s}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-s t}}{s} d t=\left[t \frac{e^{-s t}}{-s}-\frac{e^{-s t}}{s^{2}}\right]=\frac{1}{s^{2}}$
(3marks)
b. Using Laplace transform obtain the step response of series RL circuit.

Answer :

Circuit---(1 mark)

$L \frac{d i(t)}{d t}+R i(t)=V u(t)$
Taking LT on both sides $L(s I(s)-t(0+))+R I(s)=\frac{V}{s}$
$I(s)=\frac{V}{L} \frac{1}{s(s+R / L)}=\frac{A}{s}+\frac{B}{s+R / L}$
(1 mark)
$A=\left.\frac{1}{(s+R / L)}\right|_{s=}=L / R \quad, \quad B=\left.\frac{1}{s}\right|_{s=-R / L}=-L / R$
(1 mark)
$i(t)=\frac{V}{R}\left[1-e^{-\frac{R_{R}}{L}}\right]$
(1 mark)
c. Determine the Laplace transform of the signal as shown in Fig. 1

Answer :

$x(t)=2 r(t)-4 r(t-1)+4 r(t-3)-2 r(t-4)$
or (4 marks)
$x(t)=2 t u(t)-4(t-1) u(t-1)+4(t-3) u(t-3)-2(t-4) u(t-4)$
$X(s)=\frac{2}{s^{2}}-\frac{4}{s^{2}} e^{-s}+\frac{4}{s^{2}} e^{-3 s}-\frac{2}{s^{2}} e^{-4 s}$
Q. 3 a. Find the current flowing through $R_{L}=7.5 \Omega$ resistor, using Superposition theorem in the network as shown in Fig. 2

Fig. 2
b. State and explain the following theorems
(i) Norton's and (ii) Maximum power transfer.

Abstract

Answer : (i) Norton's theorem: A network across the load branch is converted into a single current source as shown in following figure. Where I_{n} is called as Norton's current source and Z_{n} is called as Norton's impedance. The current I_{n} is found by replacing the load by short circuit and also known as short circuit current and Z_{n} is the impedance looking from the load into the network replacing all the sources by its internal resistance. (Explanation -2 marks + diagrams - $\mathbf{2}$ marks)

(ii) Maximum power transfer theorem: The condition to transfer maximum power dependent on the type of source, source impedance and the type of load. The following cases are considered.

1. DC source, source impedance is pure resistance and load impedance is pure resistance varying.
2. AC source, complex source impedance and load impedance is pure resistance varying.
3. AC source, complex source impedance and complex load impedance but only resistive part of load impedance is varying.
4. AC source, complex source impedance and complex load impedance but only reactive part of load impedance is varying.
5. AC source, complex source impedance and complex load impedance and both reactive part and resistive part of load is varying.

Q. 4 a. State and explain symmetry and reciprocity in two port representation

Answer :

A two port network is said to be symmetric if the ports of the network can be interchanged without changing the port voltages and currents.
If $Y_{11}=Y_{22}$ or $Z_{11}=Z_{22}$ ie, the driving point impedances/admittances are identical, then the network is symmetrical.

A two port network is said to be reciprocal if the ratio of response transform to the excitation transform is invariant.

If $Y_{12}=Y_{21}$ or $Z_{12}=Z_{21}$ then the network is reciprocal.

b. For the two port network as shown in Fig. 3 find the Y and Z-parameters.

Fig. 3

Answer :

Node equations at node A and B are respectively

$$
\begin{align*}
& -I_{1}+\frac{V_{1}}{2}+\frac{V_{1}-V_{2}}{2}=0 \tag{1}\\
& \frac{V_{2}-V_{1}}{2}+\frac{V_{2}}{2}+3 I_{1}-I_{2}=0 \tag{2}
\end{align*}
$$

Rearranging the terms in the above equations, we get

$$
\begin{align*}
& I_{1}=V_{1}-0.5 V_{2} \\
& I_{2}=-0.5 V_{1}+V_{2}+3 I_{1} \tag{5}
\end{align*}
$$

Substituting (3) in (4), we get $I_{2}=2.5 V_{1}-0.5 V_{2}$
Comparing equations (3) and (5) with the general expression of a network using Y parameters, we get
$I_{1}=Y_{11} V_{1}+Y_{12} V_{2}$ and $I_{2}=Y_{21} V_{1}-Y_{22} V_{2}$
(1 mark)
$Y_{11}=1, \quad Y_{12}=-0.5, \quad Y_{21}=2.5, \quad$ and $\quad Y_{22}=-0.5$
(1 mark)
The relation between Y and Z-parameters is given by

$$
\begin{aligned}
& Z_{11}=\frac{Y_{22}}{\Delta Y}, \quad Z_{12}=\frac{-Y_{12}}{\Delta Y}, Z_{21}=\frac{-Y_{21}}{\Delta Y}, \quad Z_{22}=\frac{Y_{11}}{\Delta Y} \quad \text { and } \quad \Delta Y=Y_{11} Y_{22}-Y_{12} Y_{21}=0.75 \quad \text { (2 marks) } \\
& Z_{11}=-0.67 \Omega, \quad Z_{12}=0.67 \Omega, \quad Z_{21}=-3.33 \Omega, \quad Z_{22}=1.33 \Omega
\end{aligned}
$$

Q. 5 a. An RLC series circuit has $R=5 \Omega, L=100 \mathrm{mH}$ and $C=150 \mu F$ and is connected to a $\mathbf{2 3 0 V}$, variable frequency supply.
Find
(i) resonant frequency
(ii) impedance at resonance
(iii) voltage drop across inductor and capacitor at resonance
(iv) Q-factor
(v) band width.

Answer :
$f_{0}=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{2 \pi \sqrt{100 \times 10^{-3} \times 150 \times 10^{-6}}}=41.1 \mathrm{~Hz}$
impedance at resonance, $Z=R=5 \Omega$
(1mark)
At resonce, dropacrossinductor $=$ drop across capacitor $\therefore\left|V_{L}\right|=\omega_{0} L \times \frac{V}{R}=2 \pi \times 41.1 \times 100 \times 10^{-3} \times 230 / 5$

$$
\begin{equation*}
=1187.7 \mathrm{~V} \tag{2marks}
\end{equation*}
$$

$Q=\frac{\omega_{0} L}{R}=\frac{2 \pi \times 41.1 \times 100 \times 10^{-3}}{5}=5.16$
(1 mark)
Band width $=\frac{f_{0}}{Q}=\frac{41.1}{5.16}=7.96 \mathrm{~Hz}$
b. Derive the expressions for resonant frequency and impedance at resonance for parallel resonant circuit.

Answer :

$Y=Y_{1}+Y c=\frac{1}{R+j \omega L}+j \omega C=\frac{R}{R^{2}+\omega^{2} L^{2}}-j\left[\frac{\omega L}{R^{2}+\omega^{2} L^{2}}-\omega C\right]$
at resonance reactive comonent is zero $\therefore \frac{\omega_{0} L}{R^{2}+\omega^{2}{ }_{0} L^{2}}-\omega_{0} C=0$
$f_{0}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}}$
(1 mark)
At resonance admittance is
$\frac{R}{R^{2}+\omega_{0}{ }^{2} L^{2}}=Y_{0} \quad$ and $R^{2}+\omega_{0}{ }^{2} L^{2}=\frac{L}{C}$
(2 marks)
$Z_{0}=\frac{L}{C R}$
(1 mark)
Q. 6 a. Draw the lumped element equivalent of transmission line and explain the series and shunt components of the line. Also define secondary constants of the line.

Answer :

$R \rightarrow$ series resistance per unit length in flows through conductor.
$L \rightarrow$ Series inductance per unit length, which is \rightarrow (1) current flows through conductor.
$c \rightarrow$ Shunt capacitance per unit length, which \rightarrow is present when two conductors are seperated \rightarrow (1)
by dielectric.
$G \rightarrow G$ is the Conductance per unit length
is (present due to) lossless in dielectric.
R, \hat{L}, G and C are called primary constants. \rightarrow (1)
characteristic impedance z_{0} and propagation \rightarrow (1)
constant γ are called secondary constants.
$Z_{0}=\sqrt{\frac{R+j \omega L}{G+j \omega C}}$ and $\gamma=\sqrt{(R+j \omega L)(G+j \omega C)}$
b. A generator of $1 \mathrm{~V}, 1000 \mathrm{~Hz}$, supplies power to a 100 Km open wire line terminated in Ko have the following parameters $R=10 \Omega / \mathrm{Km}, G=0.8 \mu \mathrm{mhos} / \mathrm{Km}, \mathrm{L}=0.004 \mathrm{H} / \mathrm{Km}$ and $\mathbf{C}=\mathbf{0 . 0 0 8} \boldsymbol{\mu \mathrm { F }} / \mathrm{Km}$.
Calculate
(i) Characteristic impedance
(ii) Propagation constant
(iii) Attenuation constant
(iv) Phase constant
(v) Phase velocity
(vi) Wave length of the line

Answer :

Q. 7 a. Define the reflection coefficient and voltage standing wave ratio. Derive the expression for input impedance in terms of reflection coefficient of the line.

Answer :
7 (a) Reflection coefficient:- is defined as ratio of reflected signal to incidentensigno VSWR: is defined as ratio of Magnitude of Voltages to minimum voltage, $S=\frac{\left|V_{\max }\right|}{\left|V_{\min }\right|}$ Derivation: we know $V(z)=\frac{\mathbb{E}_{R}\left(z_{R}+z_{0}\right)}{2 z_{R}}\left[e^{\gamma L}+\Gamma e^{-\gamma}\right]$ $I(z)=\frac{I_{R}\left(z_{R}+z_{0}\right)\left[e^{\gamma L}-\Gamma e^{-\gamma}\right]}{2 z_{0}}$
$z(z)=\frac{V(z)}{I(z)}=\frac{I_{R} z_{R}\left(z_{R}+z_{0}\right) / 2 z_{R}\left[e^{-\gamma}+\Gamma e^{-\gamma 1}\right]}{I_{R}\left(z R+z_{0}\right) / 2 z_{0}\left[e^{\gamma L}-\Gamma e^{-\gamma}\right]}$
$z_{z}=z_{0}\left[\frac{e^{\gamma L}+\Gamma e^{-\gamma L}}{e^{\gamma L}-\Gamma e^{-\gamma L}}\right]$
or $z_{z}=z_{0} e^{\gamma x}\left[\frac{1+\Gamma e^{-2 \gamma L}}{1-\Gamma e^{-\gamma L}}\right.$
where Γ is reflection coefficient.
b. A lossless transmission line with Characteristic impedance 60Ω is 400 meters long. It is terminated with load $Z_{L}=(40+j 80) \Omega$ and operated at frequency 1 MHz . The velocity of the wave is $2.4 \times 10^{8} \mathrm{~m} / \mathrm{sec}$. Find:
(i) Reflection coefficient
(ii) VSWR
(iii) Input impedance

Answer :
(b) (i) Given $z_{0}=60 \mathrm{~s}, L=400 \mathrm{~m} ; Z_{L}=40+j 80 ;$ f $=1 \mathrm{mith}$.

$$
\begin{aligned}
& \text { vp }=2.4 \times 10^{8} \mathrm{~m} / \mathrm{sec} \\
& \text { i) Reflection coefficient } \Gamma=\frac{z_{L}-z_{0}}{z_{L}+z_{0}} \\
& \Gamma=\frac{40+j 80-60}{40+j 80+6}=0.644[65.38 \\
& \text { (ii) } S=\frac{1+1 \Gamma)}{1-(\Gamma)}=\frac{1+0.644}{1-0.64 u}=4.618 \\
& \text { (ii) } z_{z=z_{0}}\left[\frac{1+\Gamma e^{-2 \gamma L}}{\left.1-\Gamma e^{-2 \gamma L}\right] 0 \gamma|\Gamma| e^{\gamma \phi}}=\Gamma\right. \\
& z_{z=}=z_{0}\left[\frac{1+1 \Gamma 1[\phi-2 \beta L}{1-(\Gamma)[\phi-2 \beta L}\right]
\end{aligned}
$$

© IETE

$$
\left.\begin{array}{l}
\beta=\frac{2 \pi f}{v p}=0.02618 \mathrm{rad} / \mathrm{m}=26.18 \mathrm{rad} / \mathrm{kM} \\
z_{z}=60\left[\frac{1+(0.644)\left\lfloor 65.35^{\circ}-2(26.18 \times 150 \% \times 0.4\right.}{1-(0.644) 65.38-2(26.18 \times 189 \% \times 0.47}\right] \\
z_{z}=60\left[\frac{1+0.644 L-1134.62^{\circ}}{1-0.644-1134.62^{\circ}}\right]=60\left[\frac{1.4698\lfloor-20.93}{0.8178 / 40^{\circ}}\right] \\
z_{z}=107.84-60.93^{\circ} \Omega
\end{array}\right]
$$

Q. 8 a. Mention the properties of smith chart.

Answer :

8 (a) properties:
(i) Smith chart consists of resistance and reactance circles.
(ii) Complex impedance is shown by single point on chart which is superimposition of real (iii) VSWR and reflection coefficients can be easily (iv) $V_{\max }$ and Vmin locations can be found from load end or vice versa easily.
(v) Open circuit and shot circuit positions can be easily obterined on chart
(vi) To design stub matching, smith chalet can be used with les complex. calculations

b. Explain the quarter wave impedance matching circuit.

Answer :

c. A load impedance of $Z_{L}=(60-j 80) \Omega$ is required to be matched to a 50Ω line by using a short circuited Stub of length ' L ' located at distance ' d ' from the load. The wave length of operation is 1 meter. Use smith chart to find L and d.
Answer :
${ }_{(c)} z_{L}=(60-j 80) \Omega, \quad z_{0}=50 \Omega$
$z_{L_{N}}=\frac{60-j 80}{50}=1.2-j 1.6$

* mark 1.2-j1.6 on chart, take diametric opposite of this point as Load Y LN.
* Draw constant S circle with radius $O Y_{L N}$.
* This circler intersects $G=1$ circle at two
* This distance between
$O Y_{L N} Y_{L N}^{\prime}$ and $O A A^{\prime}$ is Location ' d ' of the stub.

$$
\begin{aligned}
d=(0.176-0.065) \lambda=0.111 \lambda & =0.111 \mathrm{mts} \\
& =11.1 \mathrm{cms}
\end{aligned}
$$

* At A reactance is $+j 1.5$; mack $0-j 1.5$. The distance from S,C to $(-j 1,5)$ is $L \rightarrow$ length of the stub. $L=(0.344-0.25) \lambda=0.094 \mathrm{~m}=9.4 \mathrm{~cm}$

Q. 9 a. With neat circuit diagram and graphs explain the variation of attenuation and phase constant with respect to frequency in a constant K, T-Section low pass filter.

Answer :

b. Design a T-pad attenuator to give an attenuation of 20 dB and to work in line of 600Ω impedance.

TEXT BOOK

1. Transmission Lines and Networks; Umesh Sinha, 8th Edition; Reprint 2004, Satya Prakashan, Incorporating Tech India Publications, New Delhi
