
DC69                                                                                   C# and .NET JUN 2015 

 

© IETE                                                                                                                                 1 

Solutions 

 

 Q.2 a. What are the benefits of .Net strategy advanced by Microsoft?    (6)  
 

Answer:    

Microsoft has advanced the .NET strategy in order to provide a number of benefits to developers 

and users. Some of the major benefits are: 

 Simple and faster systems development 

 Rich object model 

 Enhanced built-in functionality 

 Many different ways to communicate with the outside world 

 Integration of different languages into one platform 

 Easy deployment and execution 

 Wide range of scalability 

 Interoperability with existing applications 

 Simple and easy-to-build sophisticated development tools 

 Fewer bugs 

 Potentially better performance 

 

  b.  What is the Microsoft Intermediate Language? (4) 

 

Answer: 

Microsoft intermediate language (MISL), or simple IL, is an instruction set into which all the 

.NET programs are compiled. It is akin to assembly language and contains instruction for 

loading, storing, initializing, and calling methods. When we compile a C# program or any 

program written in a CLS-complaint language, the source code is compiled into MSIL. 

 

  c. With the help of example, explain Boxing and Unboxing.  (6) 

 

Answer: 

In object-oriented programming, methods are invoked using objects. Since value types such as 

int and long are not objects, we cannot use them to call methods. C# enables us to achieve this 

through a technique known as boxing. Boxing means the conversion of a value type on the 

stack to a object type on the heap. Conversely, the conversion from an object type back to a 

value type is known as unboxing. 

 

Boxing 
Any type, value or reference can be assigned to an object without an explicit conversion. When 

the compiler finds a value type where it needs a reference type, it creates an object “box” into 

which it places the value of the value type. The following codes will illustrates this: 

 int m = 10; 

 object ob = m;  // creates a box to hold m 

When executed, this code creates a temporary reference_type „box‟ for the object on heap. We 

can also use a C-style cast for boxing. 

int m = 10; 



DC69                                                                                   C# and .NET JUN 2015 

 

© IETE                                                                                                                                 2 

 object ob = (object)m; // C-style casting 

The boxing operation creates a copy of the value of the integer „m‟ to the object „op‟. Now both 

the variables „m‟ and „ob‟ exist but the value of „op‟ resides on the heap. This means that the 

values are independent of each other. Consider the following code: 

int m = 10; 

 object ob = m; 

 m = 20; 

 Console.WriteLine(m);   // m = 20 

 Console.WriteLine(op);  // op = 10 

 

When a code changes the value of „m‟, the value of „op‟ is not affected. 

 

Unboxing  
Unboxing is the process of converting the object type back to the value type. Remember that we 

can only unbox a variable that has been previously been boxed. In contrast to boxing, unboxing 

is an explicit operation using casting. 

 int m = 10; 
 object ob = m;   // box m 

 int n = (int) ob;  // unbox op back to an int 

when performing unboxing, C# checks that the value type we request is actually stored in the 

object under conversion. When unboxing a value, we have to ensure that the value type is large 

enough to hold the value of the object. Otherwise, the operation may result in a runtime error. 

For example, the code  

int m = 10; 
 object ob = m; 

 byte n = (byte) op; 

will produce a runtime error. 

 

When unboxing, we need to use explicit cast. This is because in the case of unboxing, an object 

could be cast to any type. Therefore, the cast is necessary for the compiler to verify that it is valid 

as per the specified value type. 

 

 Q.3 a. With the help of syntax and example, explain “foreach” statement used in C# 

programming.   (5) 

Answer: 

The foreach statement is similar to the for statement but implemented differently. It enables us 

to iterate the elements in arrays and collection classes such as List and HashTable. The general 

form of the foreach statement is: 
 foreach (type variable in expression) { 

  // Body of the loop 

 } 

The type and variable declares the iteration variable. During execution, the iteration variable 

represents the array element (or collection element in case of collections) for which an iteration 

is currently being performed. in is a keyword. The expression must be an array or collection type 

and an explicit conversion must exist from the element type of the collection to the type of the 

iteration variable. Example is as follows: 



DC69                                                                                   C# and .NET JUN 2015 

 

© IETE                                                                                                                                 3 

 public static void Main (string[] args) { 

  foreach (string s in args) { 

   Console.WriteLine(s); 

  } 

 } 

This program segment displays the command line arguments. The same may be achieved using 

the for statement as follows: 
public static void Main (string[] args) { 

  for (int i=0; i<args.Length; i++) { 

   Console.WriteLine(args[i]); 

  } 

 } 

 

The following program illustrates the use of foreach statement for printing the contents of a 

numerical array. 
using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

 

namespace foreachloopdemo 

{ 

    class ForeachTest { 

        public static void Main() { 

            int[] arrayInt = { 32, 56, 76, 21 }; 

            foreach (int m in arrayInt) 

            { 

                Console.Write(" " + m); 

            } 

            Console.WriteLine(); 

        } 

    } 

} 

 

  b. What is “fallthrough” in switch statement? How it is achieved in C#? (5) 

 

Answer: 

In the absence of the break statement in a case block, if the control moves to the next case block 

without any problem, it is known as „fallthrough‟. Fallthrough is permitted in C, C++ and Java. 

But C# does not permit automatic fallthrough, if the case block contains executable code. 

However, it is allowed if the case block is empty. For instance, 
 switch (m) { 

  case 1 : 

   x = y; 

  case 2 : 

   x = y + 1; 

  default : 

   x = y – m; 

 } 

is an error in C#. If we want two consecutive case blocks to be executed continuously, we have 



DC69                                                                                   C# and .NET JUN 2015 

 

© IETE                                                                                                                                 4 

to force the process by using the goto statement. For example: 
switch (m) { 

  case 1 : 

   x = y; 

   goto case 2; 

  case 2 : 

   x = y + 1; 

   goto default; 

  default : 

   x = y – m; 

   break; 

 } 

The goto mechanism enables us to jump backward and forward between cases therefore arrange 

labels arbitrarily. Example is as follows: 
 switch (m) { 

   

  default : 

   x = y – m; 

break; 

case 2 : 

   x = y + 1; 

   goto default; 

case 1 : 

   x = y; 

   goto case 2; 

 } 

 

  c. Given a number, write a program using while loop to find the sum of digits of 

the number. The number should be READ through keyboard. For example if 

the entered number is 12345, the output should be (1+2+3+4+5).                                                         

(6) 

Answer: 
class SumOfDigit 

    { 

        static void Main(string[] args) 

        { 

            int num; 

            int sum = 0; 

            Console.WriteLine("Program to Find the SUM of digits of the  

Entered Number"); 

            Console.WriteLine("Enter any number : "); 

            num = Int32.Parse(Console.ReadLine()); 

 

            while (num != 0) 

            { 

                int dig = num % 10; 

                sum = sum + dig; 

                num = num / 10; 

            } 

            



DC69                                                                                   C# and .NET JUN 2015 

 

© IETE                                                                                                                                 5 

Console.WriteLine("Required Sum of digits of the entered  

number is : " + sum);  

        } 

    } 

 

 Q.4 a. What is method overloading? Explain. Write a program to illustrate the concept 

of method overloading.   (8) 

 

Answer: 

C# allows us to create more than one method with the same name, but with different parameters 

lists and different definitions. This is called method overloading. Method overloading is used 

when methods are required to perform similar tasks but using different input parameters. 

Overloaded methods must differ in number and / or type of parameters they take. This enables 

the compiler to decide which one of the definitions to execute depending on the type and number 

of arguments in the method call. The method‟s return type does not play any role in the overload 

resolution. 

Using the concept of method overloading, we can design a family of methods with one name but 

different arguments list. For example, an overloaded add() method handles different types of 

data as shown below: 

  //Method Definitions 
 int add (int a, int b) { ... }  // method 1 

 int add (int a, int b, int c) { ... } // method 2 

 double add (float x, float y) { ... } // method 3 

 double add (int p, float q) { ... }  // method 4 

 double add (float x, int y) { ... }  // method 5 

 

 // Method Calls 
 int x = add(10, 20);    // method 1 

 double y = add(3.2f, 25);   // method 5 

 int z = add (2, 3, 4);   // method 2 

 double x = (2.2f, 3.3f);   // method 3 

double z = (10, 2.2f);   // method 4 

 

The method selection involves the following steps: 

 The compiler tries to find an exact match in which the types of actual parameters are the 

same and uses that method. 

 If the exact match is not found, then the compiler tries to use the implicit conversions to 

the actual arguments and then uses the method whose match is unique. If the conversion 

creates multiple matches, then the compiler will generate an error message. 

 
using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

 

namespace MethodOverloading 

{ 

    class MethodMOverloading 



DC69                                                                                   C# and .NET JUN 2015 

 

© IETE                                                                                                                                 6 

    { 

        static void Main(){ 

            Console.WriteLine(volume(10)); 

            Console.WriteLine(volume(2.5f, 8)); 

            Console.WriteLine(volume(10L, 25, 5)); 

        } 

        static int volume(int x) 

        { 

            return (x * x * x); 

        } 

        static double volume(float r, int h) 

        { 

            return (3.14 * r * r * h); 

        } 

        static long volume(long l, int b, int h) 

        { 

            return (l * b * h); 

        } 

    } 

} 

 

  b. Explain the two different ways to initialize an array. Give example. (4) 

 

Answer: 

The array can be initialized using the array subscripts as shown below. 
 arrayname[subscript] = value; 

Example: 
 list[0] = 25; 

 list[1] = 35; 

 .......... 

 .......... 

 list[10] = 99; 

C# creates arrays starting with a subscript of 0 and ends with a value one less than the size 

specified. Unlike C, C# protects arrays from overruns and underruns. Trying to access an array 

beyond its boundaries will generate an error message. Example  
 list[15] = 10;  // error 

 

We can also initialize arrays automatically in the same way as the ordinary variables when they 

are declared, as shown below: 
 type [] arrayname = [list of values]; 

The array initialize is a list of values separated by commas and defined on both ends by curly 

braces. No size is given. The compiler allocates enough space for all the elements specified in the 

list. 

 
 int[] list = {25, 35, 45, 55, 65, 75, 85, 95, 15, 99}; 

The preceding line is equivalent to : 
 int[] list = new list[8]{25, 35, 45, 75, 85, 95, 15, 99}; 

This combines all three steps, namely declaration, creation and initialization. 

 

  c. What is a variable size array? How is it different from a rectangular array?                                                                                                        



DC69                                                                                   C# and .NET JUN 2015 

 

© IETE                                                                                                                                 7 

(4) 

 

Answer: 

C# treats multidimensional arrays as „arrays of arrays‟. It is possible to declare a two-

dimensional array as follows: 
 int[][] x = new int[3][]; // three rows array 

 x[0] = new int[2];  // first row has two elements 

 x[1] = new int[4];  // second row has four elements 

 x[2] = new int[3];  // third row has three elements 

These statements create a two-dimensional array having different lengths for each row. Variable-

size arrays are called jagged arrays. The elements can be accessed as follows: 
 x[1][1]= 10; 

int y = x[2][2]; 

 

The difference is the way we access the two types of arrays. With rectangular arrays, all 

indices are within one set of square brackets, while for jagged arrays each elements is within its 

own square brackets. 

 

 Q.5  a. Describe any four methods that can be used to create immutable strings using 

„string‟ or „String‟ objects.   (8) 

 

Answer: 

We can create immutable strings using „string‟ or „String‟ objects in a number of ways as 

described below: 

 Assigning String Literals 

The most common way to create a string is to assign a quoted string of characters known 

as string literal to a string object. For example: 
 string str1;  // declaring a string object 

 str1 = “ABC”;  // assigning string literal 

Both these statements can be combined into one as follows: 
 string str1 = “ABC”; 

 Copying Strings 
We can also create new copies of existing strings. This can be accomplished in two ways: 

i. Using the overloaded = operator 

ii. Using the static Copy method 

 

Example: 
 string str2 =str1;    // assigning 

 string str2 = string.Copy(str1);  // copying 

Both these statements would accomplish the same thing, namely, copying the contents of 

str1 into str2. 

 Concatenating Strings 
We may also create new strings by concatenating existing strings. There are a couple of 

ways to accomplish this: 

i. Using the overloaded + operator 

ii. Using the static Concat method 



DC69                                                                                   C# and .NET JUN 2015 

 

© IETE                                                                                                                                 8 

Examples: 
string str3 = str1 + str2;    //str1 and str2 exist already 

string str3 = str1.Concat(str2); 

If str1 = „ABC‟ and str2 = „xyz‟, then both the statements will store the string 

„ABCxyz‟ in str3. The content of str2 is simply appended to the content of str1 and 

the result is stored in str3. 

 Reading from the Keyboard 
It is possible to read a string value interactively from the keyboard and assign it to a 

string object. 
 string str = Console.ReadLine(); 

On reaching this statement, the computer will wait for a string of characters to be entered 

from the keyboard. When the „return key‟ is pressed, the string will be read and assigned 

to the string object str. 

 The ToString Method 
Another way of creating a string is to call the ToString method on an object and assign 

the result to a string variable. 
 int num = 123; 

 string numStr = num.ToString(); 

This statement converts the number 123 to a string „123‟ and then assigns the string value 

to the string variable numStr. 

 

  b. What is structure? How values are assigned to the members of structure? State 

the important differences between structure and class.  (8) 

 

Answer: 

Structures, often referred as structs, provide a unique way of packing together data of different. It 

is a convenient tool for handling a group of logically related data items. It creates a template that 

may be used to define its data properties. Once the structure type has been defined, we can create 

variables of that type using declarations that are similar to the built-in type declarations. 

Structures are declared using the structb keyword. Its syntax is defined as follows: 
 struct struct-name { 

  data-member1; 

  data-member2; 

  ....... 

  ....... 

 } 

Example, 
 struct Student { 

  public string Name; 

  public int RollNumber; 

  public double TotalMarks; 

 } 

The keyword struct declares Student as a new data type that can hold three variables of different 

data types. These variables are known as members or fields or elements of structure Student. The 

identifier Student can now be used to create variables of type Student. Examples is as follows: 
 Student s1; 



DC69                                                                                   C# and .NET JUN 2015 

 

© IETE                                                                                                                                 9 

s1 is a variable of type Student and has three member variables as defined by the template. 

 

Member variables can be assigned values using the simple dot notation as follows: 
 s1.Name = “Ajay”; 

 s1.RollNumber = 2000; 

 s1.TotalMarks = 5000.75; 

 

Important difference between Structure and Class are listed below: 

Category Classes Structures 

Data type Reference type and therefore 

stored on the heap 

Value type and therefore stored 

on the stack. Behave like simple 

data types 

Inheritance Support inheritance Do not support inheritance 

Default values Default value of a class type is 

null 

Default value is the value 

produced by „zeroing out‟ the 

fields of the struct. 

Field 

initialization 

Permit initialization of instance 

fields 

Do not permit initialization of 

instance fields. 

Constructors Permit declaration of 

parameterless constructors 

Do not permit declaration of 

parameterless constructors 

Destructors  Supported  Not supported 

Assignment Assignment copies the reference Assignment copies the values 

 

 Q.6 a. Explain with suitable examples the three pillars of object-oriented 

programming.  (6) 

 

Answer: 

All object-oriented languages employ three core principles, namely 

 Encapsulation 

 Inheritance, and 

 Polymorphism 

These are often referred as three pillars of object-oriented programming. 

 Encapsulation provides the ability to hide the internal details of an object from its users. 

The outside user may not be able to change the state of an object directly. However, the 

state of an object may be altered indirectly using what are known as accessor and mutator 

methods. In C#, encapsulation is implemented using access modifier keywords public, 

private, and protected. 

The concept of encapsulation is also known as data hiding and information hiding. When 

done properly, we can create software „black boxes‟ that can be independently tested and 

used. 

 Inheritance is the concept we use to build new classes using the existing class 

definitions. Through inheritance we can modify a class the way we want to create new 

objects. The original class is known as base or parent class and the modified one is 

known as derived class or subclass or child class. 

The concept of inheritance facilitates the reusability of existing code and thus improves 

the integrity of programs and productivity of programmers. 



DC69                                                                                   C# and .NET JUN 2015 

 

© IETE                                                                                                                                 10 

 Polymorphism is the third concept of OOP. It is the ability to take more than one form. 

For example, an operation may exhibit different behaviour in different situations. The 

behaviour depends upon the types of data used in the operation. For example, an addition 

operation involving two numeric values will produce a sum and the same addition 

operation will produce a string if the operands are string values instead of numbers. 

Similarly, a method when called with one set of parameters may draw a circle but when 

called with another set of parameters may draw a triangle. 

Polymorphism is extensively used while implementing inheritance.  

 

  b. What is an Indexer? How does an indexer differ from a property in terms of 

implementation?  (5) 

 

Answer: 

Indexers are location indicators and are used to access class objects, just like accessing elements 

in an array. They are useful in cases where a class is a container for other objects. 

An indexer looks like a property and is written the same way a property is written, but with two 

differences: 

 An indexer takes an index argument and looks like an array. 

 The indexer is declared using the name this. 

The indexer is implemented through get and set accessors for the [] operator. Example is as 

follows: 
 public double this[int idx] { 

  get { 

   // return desired data 

  } 

  set { 

   // set desired data 

  } 

 } 

The implementation rules for get and set accessors are the same as for properties. The return type 

determines what will be returned, in this case a double. The parameter inside the square brackets 

is used as the index. 

 

Indexers are sometimes referred to as „smart arrays‟. Indexers and properties are very similar in 

concept, but differ in the following ways: 

 A property can be static member, whereas an indexer is always an instance member. 

 A get accessor of a property corresponds to a method with no parameters, whereas a get 

accessor of an indexer corresponds to a method with the same formal parameter list as the 

indexer. 

 A set accessor of a property corresponds to a method with a single parameter named 

value, whereas a set accessor of an indexer corresponds to a method with the same 

formal parameter list as the indexer, plus the parameter named value. 

 It is an error for an indexer to declare a local variable with the same name as an indexer 

parameter. 

 

  c. What are the constraints that C# imposes on the accessibility of members and 



DC69                                                                                   C# and .NET JUN 2015 

 

© IETE                                                                                                                                 11 

classes when they are used in the process of inheritance? (5) 

Answer: 

C# imposes certain constraints on the accessibility of members and classes when they are used in 

the process of inheritance. 

 The direct base class of a derived class must be at least as accessible as the derived class 

itself. 

 Accessibility domain of a member is never larger than that of the class containing it. 

 The return type of method must be at least as accessible as the method itself. 

For example, the inheritance relationship  
 class A { 

  ....... 

 } 

public class B : A { 

  ....... 

 } 

is illegal because A is „internal‟ by default and B is public. A should be at least as accessible as 

B. Consider another example: 
class A { 

  private class B { 

   public int x; 

  } 

 } 

Here, the public data x is not accessible outside the class B. It is due to the constraints imposed 

by the accessibility of class B. Because B is private, the public on x is reduced to private. 

In many situations we use methods to handle class objects and therefore they take classes as their 

return types. In such cases, the return type of a method must be at least as accessible as the 

method itself. For instance, consider the following code: 
class A { 

  ....... 

 } 

public class B { 

  A method1() {}   // ok 

  internal A Method2() {} // ok 

  public A Method3() {}  // error 

 } 

All the three methods declared in class B specify A as their return type. Since the class A, by 

default, assumes internal as the accessibility level, the method 
public A Method3() {      // public is higher than 

internal 

  ....... 

 } 

is an error. The method cannot have an accessibility level higher than that of its return type. 

 

 Q.7   a. What is an Interface? What do you mean by “Extending” and interface and 

“Implementing” interface? Explain with the help of example.  (8) 

 



DC69                                                                                   C# and .NET JUN 2015 

 

© IETE                                                                                                                                 12 

Answer: 

An interface can contain one or more methods, properties, indexers and events but none of them 

are implemented in the interface itself. It is responsibility of the class that implements the 

interface to define the code for implementation of these members. 

The syntax for defining an interface is very similar to that used for defining a class. The general 

form of an interface definition is: 
 interface InterfaceName { 

  member declarations; 

 } 

Here, interface is keyword and InterfaceName is a valid C# identifier. Member declarations will 

contain only a list of members without implementation code. For example, below is a simple 

interface that defines a single method: 
 interface Show { 

  void Display(); 

 } 

 

In addition to methods, interfaces can declare properties, indexers and events. Example is as 

follows: 
 interface ABC { 

  int ABCproperty { 

   get; 

  } 

  event someEvent Changed; 

  void Display(); 

 } 

 

The accessibility of interface can be controlled by using the modifiers public, protected, 

internal, and private. The use of a particular modifier depends on the contact in which the 

interface declaration occurs. 

 

Extending An Interface 
 

Like classes, interfaces can also be extended. That is, an interface can be subinterfaced from 

other interfaces. The new suninterface will inherit all the members of the superinterface in the 

manner similar to subclasses. This is achieved as follows: 

 
 interface I2 : I1 { 

  members of I2; 

 } 

 

For example, we can put all members of particular behaviour category in one interface and the 

members of another category in the other. Consider the code below: 
 interface Addition ( 

  int Add(int x, int y); 

 } 

 



DC69                                                                                   C# and .NET JUN 2015 

 

© IETE                                                                                                                                 13 

 interface Compute : Addition { 

  int Sub(int x, int y); 

 } 

The interface Compute will have both the methods and any class implementing the interface 

Compute should implement both of them; otherwise, it is an error. 

We can also combine several interfaces together into a single interface. Following declarations 

are valid: 
 interface I1 { 

  -------- 

 } 

 interface I2 { 

  -------- 

 } 

 

 interface I3 : I1, I2 {  // multiple inheritance 

  ---------- 

 } 

While interfaces are allowed to extend other interfaces, subinterfaces cannot define the methods 

declared in the superinterfaces. After all, subinterfaces are still interfaces, not classes. It is the 

responsibility of the class that implements the derived interface to define all the methods. 

It is important to remember that an interface cannot extend classes. This would violate the rule 

that an interface can have only abstract members. 

 

Implementing Interface 

Interfaces are used as „superclasses‟ whose properties are inherited by classes. It is therefore 

necessary to create a class that inherits the given interface. this is done as follows: 

 class classname : interfacename { 

  // body of class 

 } 

Here the class classname „implements‟ the interface interfacename. A more general for of 

implementation may look like this: 

class classname : superclass, interface1, interface2 ... { 

  // body of class 

 } 

This shows that a class can extend another class while implementing interfaces. 

In C#, we can drive from a single class and, in addition, implement as many interfaces as the 

class needs. When a class inherits from a superclass, the name of each interface to be 

implemented must appear after the superclass name. Examples: 

class A : B, I1, I2 { 

  // body of class 

 } 

where B is the base class and I1, I2 are interfaces. The base class and interfaces are separated by 

commas. 

 
  b. What is operator overloading? Write a program in C# to overload binary plus 

(+) operator to add two complex number of type x=a+iy. (8) 



DC69                                                                                   C# and .NET JUN 2015 

 

© IETE                                                                                                                                 14 

 

Answer: 

To define an additional task to an operator, we must specify what is means in relation to the class 

(or struct) to which the operator is applied. This is done with the help of a special method called 

operator overloading which describe the task. The general form of an operator overloading is:  

 public static retval operator op (arglist) { 

  method body // task define 

 } 

 

The operator is defined in much the same way as a method, except that we the compiler it is 

actually an operator we are defining by the operator keyword, followed by the operator symbol 

op. The key features of operator methods are: 

 They must be defined as public and static. 

 The return value (retval) type is the type that we get when we use this operator. But, 

technically, it can be of any type. 

 The arglist is the list of arguments passed. The number of arguments will be one for the 

unary operators and two for the binary operators.  

 In case of unary operators, the argument must be the same type as that of the enclosing 

class or struct. 

 In the case of binary operators, the first argument must be of the same type as that of the 

enclosing class or struct and the second may be of any type. 

Examples of overloaded operators are: 

 

public static Vector operator + (Vector a, Vector b) 

public static Vector operator – (Vector a) 

public static bool operator ==(Vector a, Vector b) 

 
using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

 

 

    class Complex 

    { 

        double x; 

        double y; 

        public Complex() 

        { 

        } 

        public Complex(double real, double imag) 

        { 

            x = real; 

            y = imag; 

        } 

        public static Complex operator +(Complex c1, Complex c2) 

        { 

            Complex c3 = new Complex(); 

            c3.x = c1.x + c2.x; 

            c3.y = c1.y + c2.y; 



DC69                                                                                   C# and .NET JUN 2015 

 

© IETE                                                                                                                                 15 

            return (c3); 

        } 

        public void Display() 

        { 

            Console.Write(x); 

            Console.Write(" + j" + y); 

            Console.WriteLine(); 

        } 

    } 

    class ComplexTest { 

        public static void Main() 

        { 

            Complex a, b, c; 

            a = new Complex(2.5, 3.5); 

            b = new Complex(1.6, 2.7); 

            c = a + b; 

            Console.Write(" a = "); 

            a.Display(); 

            Console.Write(" b = "); 

            b.Display(); 

            Console.Write(" c = "); 

            c.Display(); 

        } 

 } 

 

 Q.8   a. What is delegate? Discuss the syntax of delegate declaration. What are the 

modifiers that can be applied to a delegate? Give examples.  (8) 

 

Answer: 

In C#, a delegate means a method acting for another method. A delegate in C# is a class type 

object and is invoked a method that has been encapsulated into it at the time of its creation. 

Creating and using delegates involves four steps: 

 Delegate declaration 

 Delegate methods definition 

 Delegate instantiation 

 Delegate invocation 

 

A delegate declaration defines a class using the class System.Delegate as a base class. Delegate 

methods are any functions (defined in a class) whose signature matches the delegate signature 

exactly. The delegate instance holds the reference to delegate methods. The instance is used to 

invoke the methods indirectly. 

 

Delegate Declaration 
A delegate declaration is a type declaration and takes the following general form: 
 modifier delegate return-type delegate-name (parameters); 

 

delegate is the keyword that signifies that the declaration represents a class type derived from 

System.Delegate. The return-type indicates the return type of the delegate. Parameters identifies 

the signature of the delegate. The delegate-name is any valid C# identifier and is the name of the 

delegate that will be used to instantiate delegate objects. 



DC69                                                                                   C# and .NET JUN 2015 

 

© IETE                                                                                                                                 16 

The modifier controls the accessibility of the delegate. It is optional. Depending upon the context 

in which they are declared, delegates may take any of the following modifiers: 

 new  

 public 

 protected 

 internal 

 private 

The new modifier is only permitted on delegates declared within another type. It signifies that 

the delegate hides an inherited member by the same name. 

Some examples of delegates are: 

 delegate void SimpleDelegate(); 

 delegate int MathOperation(int x, int y); 

 public delegate int CompareItems(object ob1, object ob2); 

 private delegate string GetString(); 

 delegate double DoubleOperation(double x); 

 

Although the syntax of delegate is similar to that of method definition (without method body), 

the use of keyword delegate  tells the compiler that it is definition of a new class using the 

System.Delegate as the base class. Since it is a class type, it can be defined in any place where a 

class definition is permitted. Thus, a delegate may be defined in the following places: 

 Inside a class 

 Outside all classes 

 As the top level object in a namespace 

Depending on how visible we want the delegate to be, we can apply any of the visibility 

modifiers to the delegate definition. Delegate types are implicitly sealed and therefore it is not 

possible to derive any type from a delegate type. it is also not permissible to derive a non-

delegate class type from System.Delegate. 

 

  b. Explain the general format of the “Standard Numerical format”. (8) 

 

Answer: 

The standard numeric format consists of a numeric format character and optionally a precision 

specifier. The general format of a marker would appear like  

  {n:fc[p]} 

where n is the index number of the argument to be substituted, fc is the format character and p is 

the precision specifier 

 Currency Formatting: The currency formatting converts the numerical value to a string 

containing a locale-specific currency symbol. By default, the dollar symbol is added. 

However, it can be changed using a NumberFormatInfo object. Examples are as 

follows: 

(“{0 : C}”, 4567.899) ------> $4,567.90 

(“{0 : C}”, -4567.899) ------> ($4,567.90) 

When the number is negative, the value is printed as positive inside simple brackets. The 

decimal part, by default, is rounded to two places.  

 

 Integer Formatting: Integer format converts a given numerical value to an integer of 



DC69                                                                                   C# and .NET JUN 2015 

 

© IETE                                                                                                                                 17 

base. The minimum number of digits is determined by the precision specifier. If the 

precision specifier is less than the actual digits, the specifier is ignored and all the digits 

are printed. If it is greater, then the result is left-padded with zeros to obtain the specifier 

number of digits. Examples are as follows: 

(“{ 0 : D }” , 45678 ----------> 45678 

(“{ 0 : D8 }” , 45678 ----------> 00045678 

 

 Exponential Formatting: Exponential formatting character (E or e) converts a given 

value to a string in the form of: 

m.dddd E+xxx 

The output will contain only one digit m before the decimal point. The number of decimal 

places (dddd) is decided by the precision specifier. By default, six places are used. The 

format character E (or e) will appear in the output. Examples are as follows: 

 (“{ 0 : E }” , 34567.899) ------------>  3.456790E+004 

 (“{ 0 : E9 }” , 34567.899) ------------>  3.456789900E+004 

 (“{ 0 : e5 }” , 34567.899) ------------>  3.45679e+004 

The decimal part is rounded (not truncated) to the specifier places. If the specified places 

are more, then the decimal part is padded at the right with zeros. 

 

 Fixed-Point Format: The fixed-point format converts the given value to a string 

containing decimal places as decided by the precision specifier. By default, two decimal 

places are assumed. Zeros as a precision specifier is allowed. Examples are as follows: 

(“{ 0 : F }” , 3456.7899) ------------>  3456.79 

(“{ 0 : F6 }” , 3456.7899) ------------>  3456.789900 

(“{ 0 : F0 }” , 3456.7899) ------------>  3456 

The decimal part is always rounded (or padded with zeros) to the specified precision 

places. A zero precision converts the value to the nearest integer. 

 

 Number Format: This format produces the output with the embedded commas, like 

5,678.45. Examples are as follows: 

(“{ 0 : N }” , 34567.899) ------------>  34,567.90 

(“{ 0 : N }” , 34567) ------------>  34,567.00 

(“{ 0 : N4 }” , 34567.899) ------------>  34,567.8990 

The precision specifier decides the number of decimal places. It is two by default. The 

decimal part is rounded to the specified precision places. If the specified places are more, 

the decimal part is padded with zeros. 

 

Q.9   a. Consider the following code for nested-try block: 

        try { 

  .......... // Point P1 

  .......... 

  try { 

   ...........   // Point P2 

   ........... 

  } 

  catch { 



DC69                                                                                   C# and .NET JUN 2015 

 

© IETE                                                                                                                                 18 

   ............   // Point P3 

   ............ 

  } 

  finally { 

   ............ 

   ............ 

  } 

  .............    // Point P4 

  ............. 

  } 

  catch { 

  ........... 

  ........... 

  } 

  finally { 

  ........... 

  ........... 

  } 

 

Explain how exceptions that are thrown as at points P1, P2, P3, and P4 are handled?(2×4) 

 

Answer: 

When nested try blocks are executed, the exceptions that are thrown at various points are handled 

as follows: 

 The points P1 and P4 are outside the inner try block and therefore any exceptions thrown 

at these points will be handled by the catch in the outer block. The inner try block is 

simply ignored. 

 Any exception thrown at point P2 will be handled by the inner catch handler and the 

inner finally will be executed. The execution will continue at point P4 in the program. 

 If there is no suitable catch handler to catch an exception thrown at P2, the control will 

leave the inner block (after executing the inner finally) and look for a suitable catch 

handler in the outer block. If a suitable one is found, then that handler is executed 

followed by the outer finally code. The code at point P4 will be skipped. 

 If an exception is thrown at point P3, it is treated as if it had been thrown by the outer try 

block and, therefore, the control will immediately leave the inner block, after executing 

the inner finally, and search for a suitable catch handler in the outer block. 

 In case, a suitable catch handler is not found, then the system will terminate program 

execution with an appropriate message. 

 

  b. What is thread pooling? Write a program in C# to illustrate the use of thread 

pool.   (8) 

Answer: 

In thread pooling, a thread pool is created to perform multiple tasks simultaneously. A thread 

pool is basically a group of threads that can be run simultaneously to perform a number of tasks 

in the background. This feature of C# is mainly used in server applications. In server 

applications, a main thread receives the requests from the client computers and passes it to a 



DC69                                                                                   C# and .NET JUN 2015 

 

© IETE                                                                                                                                 19 

thread in the thread pool for processing of the request. In this manner, the main thread functions 

asynchronously and is free to receive the requests from client computers. The main thread does 

not have to process the request. Instead, the request is transferred to a thread in the thread pool 

for processing. A delay in receiving the requests from the client computer does not occur because 

of implementation of thread pooling in server applications. After the thread in the thread pool 

completes the task of processing the client request, it waits in a queue for performing another 

task. In this way, the thread in the thread pool can be reused for performing different tasks. The 

reusability of the thread because of thread pooling enables a server application to avoid creating 

a new thread for every task. 

A thread pool may contain a number of threads, each performing a specific task. If all the threads 

in a thread pool are occupied in the performing their tasks then a new task, which needs to be 

processed, waits in a queue until a thread becomes free. The .NET frame work provides a thread 

pool through the ThreadPool class. We can either implement a custom thread pool in a C# 

program or use the thread pool provided through the ThreadPool class. It is easy to implement a 

thread pool through the ThreadPool class. 

 
Program to illustrate the concept of Thread Pooling 

 
using System; 

using System.Collections.Generic; 

using System.Threading; 

using System.Text; 

 

namespace ThreadPooling 

{ 

    class ThreadPoolTest 

    { 

        static object showThread = new object(); 

        static int runThreads = 20; 

 

        public static void Main() { 

            for (int i = 0; i < runThreads; i++) { 

                ThreadPool.QueueUserWorkItem(Display, i); 

            } 

            Console.WriteLine("Running 20 threads\n"); 

            lock (showThread) { 

                while (runThreads > 0) Monitor.Wait(showThread); 

            } 

            Console.WriteLine("All Threads stopped successfully"); 

            Console.ReadLine(); 

        } 

        public static void Display(object threadObj) { 

            Console.WriteLine("Started Thread : " + threadObj); 

            Thread.Sleep(3000); 

            Console.WriteLine("Ended Thread :" + threadObj); 

            lock(showThread){ 

                runThreads--; 

                Monitor.Pulse(showThread); 

            } 

           

        } 

    } 

} 



DC69                                                                                   C# and .NET JUN 2015 

 

© IETE                                                                                                                                 20 

 

TEXT BOOK 

 

Programming in C# - A Primer, E. Balagurusamy, Second Edition, TMH, 2008 


