
DC62 DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 1

 Q.2 a. Discuss the responsibilities of the DBA and Database Designers? (4)

Answer:

Database Administrator
In any organization where many people use the same resources, there is a need for a chief

administrator to oversee and manage these resources. In a database environment, the primary

resource is the database itself, and the secondary resource is the DBMS and related software.

Administering these resources is the responsibility of the database administrator (DBA). The

DBA is responsible for authorizing access to the database, coordinating and monitoring its use

and acquiring software and hardware resources as needed. The DBA is accountable for problems

such as security breaches and poor system response time. In large organizations, the DBA is
assisted by a staff that carries out these functions.

Database Designers

Database designers are responsible for identifying the data to be stored in the database and for

choosing appropriate structures to represent and store this data. These tasks are mostly

undertaken before the database is actually implemented and populated with data. It is the

responsibility of database designers to communicate with all prospective database users in order

to understand their requirements and to create a design that meets these requirements. In many

cases, the designers are on the staff of the DBA and may be assigned other staff responsibilities

after the database design is completed. Database designers typically interact with each potential

group of users and develop views of the database that meet the data and processing requirements

of these groups. Each view is then analyzed and integrated with the views of other user groups.

The final database design must be capable of supporting the requirements of all user groups.

 b. With the help of a diagram, explain the component modules of a

DBMS and their interactions? (9)

Answer:

The following Figure illustrates, in a simplified form, the typical DBMS components. The

figure is divided into two parts. The top part of the figure refers to the various users of the

database environment and their interfaces. The lower part shows the internals of the DBMS

responsible for storage of data and processing of transactions.
The database and the DBMS catalog are usually stored on disk. Access to the disk is controlled

primarily by the operating system (OS), which schedules disk read/write. Many DBMSs have

their own buffer management module to schedule disk read/write, because this has a

considerable effect on performance. Reducing disk read/write improves performance

considerably. A higher-level stored data manager module of the DBMS controls access to

DBMS information that is stored on disk, whether it is part of the database or the catalog.

The top part of figure shows interfaces for the DBA staff, casual users who work with interactive

interfaces to formulate queries, application programmers who create programs using some host

programming languages, and parametric users who do data entry work by supplying parameters

to predefined transactions. The DBA staff works on defining the database and tuning it by

making changes to its definition using the DDL and other privileged commands.

The DDL compiler processes schema definitions, specified in the DDL, and stores descriptions of

the schemas (meta-data) in the DBMS catalog. The catalog includes information such as the

names and sizes of files, names and data types of data items, storage details of each file, mapping

information among schemas, and constraints. In addition, the catalog stores many other types of

information that are needed by the DBMS modules, which can then look up the catalog

information as needed.

DC62 DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 2

Component modules of a DBMS and their interactions

Casual users and persons with occasional need for information from the database interact using

some form of interface, which we call the interactive query interface. These queries are parsed

and validated for correctness of the query syntax, the names of files and data elements, and so on

by a query compiler that compiles them into an internal form. This internal query is subjected to

query optimization. Among other things, the query optimizer is concerned with the
rearrangement and possible reordering of operations, elimination of redundancies, and use of

correct algorithms and indexes during execution. It consults the system catalog for statistical and

other physical information about the stored data and generates executable code that performs the

necessary operations for the query and makes calls on the runtime processor.

Application programmers write programs in host languages such as Java, C, or C++ that are

submitted to a precompiler. The precompiler extracts DML commands from an application

program written in a host programming language. These commands are sent to the DML compiler

for compilation into object code for database access. The rest of the program is sent to the host

language compiler. The object codes for the DML commands and the rest of the program are

linked, forming a canned transaction whose executable code includes calls to the runtime

database processor. Canned transactions are executed repeatedly by parametric users, who simply

supply the parameters to the transactions. Each execution is considered to be a separate

transaction. An example is a bank withdrawal transaction where the account number and the

amount may be supplied as parameters.

In the lower part of figure, the runtime database processor executes (1) the privileged
commands, (2) the executable query plans, and (3) the canned transactions with runtime

parameters. It works with the system catalog and may update it with statistics. It also works with

the stored data manager, which in turn uses basic operating system services for carrying out

low-level input/output (read/write) operations between the disk and main memory. The runtime

DC62 DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 3

database processor handles other aspects of data transfer, such as management of buffers in the

main memory. Some DBMSs have their own buffer management module while others depend on

the OS for buffer management. We have shown concurrency control and backup and recovery
systems separately as a module in this figure. They are integrated into the working of the runtime

database processor for purposes of transaction management.

It is now common to have the client program that accesses the DBMS running on a separate

computer from the computer on which the database resides. The former is called the client

computer running DBMS client software and the latter is called the database server. In some

cases, the client accesses a middle computer, called the application server, which in turn

accesses the database server.

 c. What does defining, manipulating and protecting of a database mean?

 (3)

Answer:

Defining a database involves specifying the data types, structures, and constraints of the

data to be stored in the database. The database definition or descriptive information is

also stored by the DBMS in the form of a database catalog or dictionary; it is called

meta-data.

Constructing the database is the process of storing the data on some storage medium that

is controlled by the DBMS.

Protection includes system protection against hardware or software malfunction (or

crashes) and security protection against unauthorized or malicious access.

 Q.3 a. Discuss the role of a high-level data model in the database design

process? (7)

Answer:

Following figure shows a simplified overview of the database design process. The first

step shown is requirements collection and analysis. During this step, the database

designers interview prospective database users to understand and document their data

requirements. The result of this step is a concisely written set of users‘ requirements.

These requirements should be specified in as detailed and complete a form as possible. In

parallel with specifying the data requirements, it is useful to specify the known

functional requirements of the application. These consist of the user defined operations

(or transactions) that will be applied to the database, including both retrievals and

updates. In software design, it is common to use data flow diagrams, sequence diagrams,

scenarios, and other techniques to specify functional requirements.

DC62 DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 4

A simplified diagram to illustrate the main phases of database design

Once the requirements have been collected and analyzed, the next step is to create a

conceptual schema for the database, using a high-level conceptual data model. This step

is called conceptual design. The conceptual schema is a concise description of the data

requirements of the users and includes detailed descriptions of the entity types,

relationships, and constraints; these are expressed using the concepts provided by the

high-level data model. Because these concepts do not include implementation details,

they are usually easier to understand and can be used to communicate with nontechnical

users. The high-level conceptual schema can also be used as a reference to ensure that all

users‘ data requirements are met and that the requirements do not conflict. This approach

enables database designers to concentrate on specifying the properties of the data,

without being concerned with storage and implementation details. This makes it is easier

to create a good conceptual database design.

During or after the conceptual schema design, the basic data model operations can be

used to specify the high-level user queries and operations identified during functional

analysis. This also serves to confirm that the conceptual schema meets all the identified

functional requirements. Modifications to the conceptual schema can be introduced if

some functional requirements cannot be specified using the initial schema.

The next step in database design is the actual implementation of the database, using a

commercial DBMS. Most current commercial DBMSs use an implementation data

model—such as the relational or the object-relational database model—so the conceptual

schema is transformed from the high-level data model into the implementation data

model. This step is called logical design or data model mapping; its result is a database

DC62 DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 5

schema in the implementation data model of the DBMS. Data model mapping is often

automated or semi-automated within the database design tools.

The last step is the physical design phase, during which the internal storage structures,

file organizations, indexes, access paths, and physical design parameters for the database

files are specified. In parallel with these activities, application programs are designed and

implemented as database transactions corresponding to the high-level transaction

specifications.

 b. What do you mean by Entity and Relationship in ER model? Explain

how a relationship set is defined? (4)

Answer:
Entity: The basic object that ER Model represents is an entity, which is a thing in the real world

within independent existences. An entity may be an object with a physical existence such as a

particular person, car, house etc.

For example, Entity Name: Employee

Attribute Name: Name, Age, Sex, Salary

Relationship: A relationship is an association among several entities.

Relationship set: A relationship set is a set of relationships of same type. Basically, it is a

mathematical relation on n >= 2 entity sets. If E1, E2, ………….., En are entity sets, then a

relationship set R is a subset of

 {(e1, e2, ……., en) | e1 E1, e2 E2, ……., en En}

where (e1, e2, ……., en) is a relationship.

 c. Discuss the characteristics of relations that make them different from

ordinary tables and files? (5)

Answer:
The characteristics that make a relation different from ordinary tables and files are as follows:

 Ordering of Tuples in a Relation. A relation is defined as a set of tuples.
Mathematically, elements of a set have no order among them; hence, tuples in a relation
do not have any particular order. In other words, a relation is not sensitive to the ordering

of tuples. But, in a file, records are physically stored on disk (or in memory), so there

always is an order among the records. This ordering indicates first, second, ith, and last

records in the file. Similarly, when we display a relation as a table, the rows are displayed

in a certain order.

 Ordering of Values within a Tuple and an Alternative Definition of a Relation.

According to the preceding definition of a relation, an n-tuple is an ordered list of n

values, so the ordering of values in a tuple—and hence of attributes in a relation

schema—is important. However, at a more abstract level, the order of attributes and their

values is not that important as long as the correspondence between attributes and values

is maintained.

 Values and NULLs in the Tuples. Each value in a tuple is an atomic value; that is, it is

not divisible into components within the framework of the basic relational model. Hence,

composite and multivalued attributes are not allowed. This model is sometimes called the

flat relational model. Much of the theory behind the relational model was developed

with this assumption in mind, which is called the first normal form assumption. Hence,

multivalued attributes must be represented by separate relations, and composite attributes

are represented only by their simple component attributes in the basic relational model.

DC62 DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 6

An important concept is that of NULL values, which are used to represent the values of

attributes that may be unknown or may not apply to a tuple. A special value, called

NULL, is used in these cases.

 Interpretation of a Relation. The relation schema can be interpreted as a declaration or

a type of assertion. Each tuple in the relation can then be interpreted as a fact or a

particular instance of the assertion. Some relations may represent facts about entities,

whereas other relations may represent facts about relationships.

 Q.4 a. With the help of a suitable example, explain the following Relational

Algebra operations with their notations:

 (i) SELECT

(ii) PROJECT

 (iii) INTERSECTION (3×3)

Answer:
(i) SELECT

The SELECT operation P(r) selects those tuples from relation r, which satisfy a

given predicate P. The predicate P appears as a subscript to . The argument

relation is given in parentheses following the . Thus, to select those tuples of the

loan relation where the branch name is ―XYZ‖, the query will be

 branch-name = ―XYZ‖ (loan)

(ii) PROJECT

The PROJECT operation S(r) projects attributes list S from r(R). Any duplicates

tuples in the result are automatically eliminated. Thus, the query to list all loan

numbers and the amount of the loan can be written as

 loan-number, amount(loan)

(iii) INTERSECTION

The INTERSECTION operation r s, between two relation ‗r‘ and ‗s‘, produces

a relation with tuples which are there in relation ‗r‘ as well as in relation ‗s‘. For

the operation r s to be feasible, the relations ‗r‘ and ‗s‘ must be compatible.

The query to get the names of those customers who have an account as well as

loan in the bank is

 cust-name(deposit) cust-name(loan)

This will return the name of all customers with both an account and a loan at the

bank.

 b. Outline the steps to convert the basic ER model to relational database

schema. (7)

Answer:
Step 1: Mapping of Regular Entity Types. For each regular (strong) entity type E in the ER

schema, create a relation R that includes all the simple attributes of E. Include only the simple

component attributes of a composite attribute. Choose one of the key attributes of E as the

primary key for R. If the chosen key of E is a composite, then the set of simple attributes that

form it will together form the primary key of R.

If multiple keys were identified for E during the conceptual design, the information describing the

attributes that form each additional key is kept in order to specify secondary (unique) keys of

relation R. Knowledge about keys is also kept for indexing purposes and other types of analyses.

DC62 DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 7

Step 2: Mapping of Weak Entity Types. For each weak entity type W in the ER schema with

owner entity type E, create a relation R and include all simple attributes (or simple components of

composite attributes) of W as attributes of R. In addition, include as foreign key attributes of R,

the primary key attribute(s) of the relation(s) that correspond to the owner entity type(s); this

takes care of mapping the identifying relationship type of W. The primary key of R is the

combination of the primary key(s) of the owner(s) and the partial key of the weak entity type W,

if any.

If there is a weak entity type E2 whose owner is also a weak entity type E1, then E1 should be

mapped before E2 to determine its primary key first.

Step 3: Mapping of Binary 1:1 Relationship Types. For each binary 1:1 relationship type R in

the ER schema, identify the relations S and T that correspond to the entity types participating in

R. There are three possible approaches: (1) the foreign key approach, (2) the merged relationship

approach, and (3) the cross-reference or relationship relation approach.

Step 4: Mapping of Binary 1:N Relationship Types. For each regular binary 1:N relationship

type R, identify the relation S that represents the participating entity type at the N-side of the

relationship type. Include as foreign key in S the primary key of the relation T that represents the

other entity type participating in R; we do this because each entity instance on the N-side is

related to at most one entity instance on the 1-side of the relationship type. Include any simple

attributes (or simple components of composite attributes) of the 1:N relationship type as attributes

of S.

Step 5: Mapping of Binary M:N Relationship Types. For each binary M:N relationship type R,

create a new relation S to represent R. Include as foreign key attributes in S the primary keys of

the relations that represent the participating entity types; their combination will form the primary

key of S. Also include any simple attributes of the M:N relationship type (or simple components

of composite attributes) as attributes of S. Notice that we cannot represent an M:N relationship
type by a single foreign key attribute in one of the participating relations because of the M:N

cardinality ratio; we must create a separate relationship relation S.

Step 6: Mapping of Multivalued Attributes. For each multivalued attribute A, create a new

relation R. This relation R will include an attribute corresponding to A, plus the primary key

attribute K—as a foreign key in R—of the relation that represents the entity type or relationship

type that has A as a multivalued attribute. The primary key of R is the combination of A and K. If

the multivalued attribute is composite, we include its simple components.

Step 7: Mapping of N-ary Relationship Types. For each n-ary relationship type R, where n > 2,

create a new relation S to represent R. Include as foreign key attributes in S the primary keys of

the relations that represent the participating entity types. Also include any simple attributes of the

n-ary relationship type (or simple components of composite attributes) as attributes of S. The

primary key of S is usually a combination of all the foreign keys that reference the relations

representing the participating entity types. However, if the cardinality constraints on any of the

entity types E participating in R is 1, then the primary key of S should not include the foreign key

attribute that references the relation E' corresponding to E.

 Q.5 a. What are the basic data types available for attributes in SQL? (8)

Answer:
The basic data types available for attributes include numeric, character string, bit string,

Boolean, date, and time.

 Numeric data types include integer numbers of various sizes (INTEGER or INT, and

SMALLINT) and floating-point (real) numbers of various precision (FLOAT or REAL,

and DOUBLE PRECISION). Formatted numbers can be declared by using

DECIMAL(i,j) or DEC(i,j) or NUMERIC(i,j) where i, the precision, is the total number

DC62 DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 8

of decimal digits and j, the scale, is the number of digits after the decimal point. The

default for scale is zero, and the default for precision is implementation-defined.

 Character-string data types are either fixed length—CHAR(n) or CHARACTER(n),

where n is the number of characters or varying length VARCHAR(n) or CHAR

VARYING(n) or CHARACTER VARYING(n), where n is the maximum number of

characters. When specifying a literal string value, it is placed between single quotation

marks (apostrophes), and it is case sensitive. For fixed length strings, a shorter string is

padded with blank characters to the right. For example, if the value ‗Smith‘ is for an

attribute of type CHAR(10), it is padded with five blank characters to become ‗Smith ‘ if

needed. Padded blanks are generally ignored when strings are compared. For comparison
purposes, strings are considered ordered in alphabetic (or lexicographic) order; if a string

str1 appears before another string str2 in alphabetic order, then str1 is considered to be

less than str2. There is also a concatenation operator denoted by || (double vertical bar)

that can concatenate two strings in SQL. For example, ‗abc‘ || ‗XYZ‘ results in a single

string ‗abcXYZ‘. Another variable-length string data type called CHARACTER LARGE

OBJECT or CLOB is also available to specify columns that have large text values, such

as documents. The CLOB maximum length can be specified in kilobytes (K), megabytes

(M), or gigabytes (G). For example, CLOB(20M) specifies a maximum length of 20

megabytes.

 Bit-string data types are either of fixed length n, BIT(n) or varying length, BIT

VARYING(n), where n is the maximum number of bits. The default for n, the length of a

character string or bit string, is 1. Literal bit strings are placed between single quotes but

preceded by a B to distinguish them from character strings; for example, B‗10101‘.
Another variable-length bitstring data type called BINARY LARGE OBJECT or BLOB

is also available to specify columns that have large binary values, such as images. As for
CLOB, the maximum length of a BLOB can be specified in kilobits (K), megabits (M),

or gigabits (G). For example, BLOB(30G) specifies a maximum length of 30 gigabits.

 A Boolean data type has the traditional values of TRUE or FALSE. In SQL, because of

the presence of NULL values, a three-valued logic is used, so a third possible value for a

Boolean data type is UNKNOWN.
 The DATE data type has ten positions, and its components are YEAR, MONTH, and

DAY in the form YYYY-MM-DD. The TIME data type has at least eight positions, with

the components HOUR, MINUTE, and SECOND in the form HH:MM:SS. Only valid

dates and times should be allowed by the SQL implementation. This implies that months

should be between 1 and 12 and dates must be between 1 and 31; furthermore, a date

should be a valid date for the corresponding month. The < (less than) comparison can be

used with dates or times—an earlier date is considered to be smaller than a later date,

and similarly with time. Literal values are represented by single-quoted strings preceded

by the keyword DATE or TIME; for example, DATE ‗2008-09-27‘ or TIME ‗09:12:47‘.

In addition, a data type TIME(i), where i is called time fractional seconds precision,

specifies i + 1 additional positions for TIME—one position for an additional period (.)

separator character, and i positions for specifying decimal fractions of a second. A TIME

WITH TIME ZONE data type includes an additional six positions for specifying the

displacement from the standard universal time zone, which is in the range +13:00 to –

12:59 in units of HOURS:MINUTES. If WITH TIME ZONE is not included, the default

is the local time zone for the SQL session.

A timestamp data type (TIMESTAMP) includes the DATE and TIME fields, plus a

minimum of six positions for decimal fractions of seconds and an optional WITH TIME

ZONE qualifier. Literal values are represented by single quoted strings preceded by the

DC62 DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 9

keyword TIMESTAMP, with a blank space between data and time; for example,

TIMESTAMP ‗2008-09-27 09:12:47.648302‘.

 Another data type related to DATE, TIME, and TIMESTAMP is the INTERVAL data

type. This specifies an interval—a relative value that can be used to increment or

decrement an absolute value of a date, time, or timestamp. Intervals are qualified to be

either YEAR/MONTH intervals or DAY/TIME intervals.

 b. List the three main approaches for database programming? What are

the advantages and disadvantages of each approach? (8)

Answer:
Several techniques exist for including database interactions in application programs. The main

approaches for database programming are the following:

 Embedding database commands in a general-purpose programming language.

In this approach, database statements are embedded into the host programming language,

but they are identified by a special prefix. For example, the prefix for embedded SQL is

the string EXEC SQL, which precedes all SQL commands in a host language program. A

precompiler or preproccessor scans the source program code to identify database

statements and extract them for processing by the DBMS. They are replaced in the

program by function calls to the DBMS-generated code. This technique is generally

referred to as embedded SQL.

 Using a library of database functions.
A library of functions is made available to the host programming language for database

calls. For example, there could be functions to connect to a database, execute a query,

execute an update, and so on. The actual database query and update commands and any
other necessary information are included as parameters in the function calls. This

approach provides what is known as an application programming interface (API) for

accessing a database from application programs.

 Designing a brand-new language.
A database programming language is designed from scratch to be compatible with the

database model and query language. Additional programming structures such as loops

and conditional statements are added to the database language to convert it into a full
fledged programming language. An example of this approach is Oracle‘s PL/SQL.

In practice, the first two approaches are more common, since many applications are already

written in general-purpose programming languages but require some database access. The third

approach is more appropriate for applications that have intensive database interaction. One of the

main problems with the first two approaches is impedance mismatch, which does not occur in the

third approach.

 Q.6 a. Discuss insertion, deletion and modification anomalies. Why are they

undesirable? Illustrate with examples? (8)

Answer:

Consider the following EMP_DEPT relation:

DC62 DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 10

Insertion Anomalies. Insertion anomalies can be differentiated into two types, illustrated by the

following examples based on the EMP_DEPT relation:

 To insert a new employee tuple into EMP_DEPT, we must include either the attribute

values for the department that the employee works for, or NULLs (if the employee does

not work for a department as yet). For example, to insert a new tuple for an employee

who works in department number 5, we must enter all the attribute values of department

5 correctly so that they are consistent with the corresponding values for department 5 in

other tuples in EMP_DEPT.
 It is difficult to insert a new department that has no employees as yet in the EMP_DEPT

relation. The only way to do this is to place NULL values in the attributes for employee.

This violates the entity integrity for EMP_DEPT because Ssn is its primary key.
Moreover, when the first employee is assigned to that department, we do not need this

tuple with NULL values any more.
Deletion Anomalies. The problem of deletion anomalies is related to the second insertion

anomaly situation just discussed. If we delete from EMP_DEPT an employee tuple that happens

to represent the last employee working for a particular department, the information concerning

that department is lost from the database.
Modification Anomalies. In EMP_DEPT, if we change the value of one of the attributes of a

particular department—say, the manager of department 5—we must update the tuples of all

employees who work in that department; otherwise, the database will become inconsistent. If we

fail to update some tuples, the same department will be shown to have two different values for

manager in different employee tuples, which would be wrong.
It is easy to see that these three anomalies are undesirable and cause difficulties to maintain

consistency of data as well as require unnecessary updates that can be avoided.

 b. Define minimal cover of a set? Give an algorithm for finding a

Minimal Cover F for a Set of Functional Dependencies E. (2+6)

Answer:
A minimal cover of a set of functional dependencies E is a minimal set of dependencies that is

equivalent to E. We can always find at least one minimal cover F for any set of dependencies E

using the following algorithm:

Algorithm for finding a Minimal Cover F for a set of functional dependencies E

1. Set F:= E.

DC62 DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 11

2. Replace each functional dependency X → {A1, A2, ………., An} in F by the n

functional dependencies X → A1, X → A2, ………, X → An.

3. For each functional dependencies X → A in F

for each attribute B that is an element of X

if {{F – {X → A} U {(X – {B}) → A}} is equivalent to F,

 then replace X → A with (X – {B}) → A in F.

4. For each remaining functional dependency X → A in F

if {F – {X → A}} is equivalent to F,

 then remove X → A from F.

 Q.7 a. Define the following: (2×4)

 (i) Multivalued Dependency

 (ii) Join Dependency

 (iii) Fourth normal form

 (iv) Fifth normal form

Answer:
(i) Multivalued Dependency

A multivalued dependency X→→Y specified on relation schema R, where X and

Y are both subsets of R, specifies the following constraint on any relation state r of

R: If two tuples t1 and t2 exist in r such that t1[X] = t2[X], then two tuples t3 and t4

should also exist in r with the following properties, where we use Z to denote (R –

(X Y)):

 t3[X] = t4[X] = t1[X] = t2[X].

 t3[Y] = t1[Y] and t4[Y] = t2[Y].

 t3[Z] = t2[Z] and t4[Z] = t1[Z].

(ii) Join Dependency

A join dependency (JD), denoted by JD(R1, R2, ..., Rn), specified on relation

schema R, specifies a constraint on the states r of R. The constraint states that

every legal state r of R should have a nonadditive join decomposition into R1, R2,

..., Rn. Hence, for every such r we have

(πR1(r), πR2(r), ..., πRn(r)) = r

(iii) Fourth normal form

A relation schema R is in 4NF with respect to a set of dependencies F (that

includes functional dependencies and multivalued dependencies) if, for every

nontrivial multivalued dependency X →→ Y in F
+
 X is a superkey for R.

We can state the following points:

 An all-key relation is always in BCNF since it has no FDs.

 An all-key relation such as the EMP relation in Figure below, which has no

FDs but has the MVD Ename→→ Pname | Dname, is not in 4NF.

DC62 DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 12

 A relation that is not in 4NF due to a nontrivial MVD must be decomposed to

convert it into a set of relations in 4NF.

 The decomposition removes the redundancy caused by the MVD.

(iv) Fifth normal form

A relation schema R is in fifth normal form (5NF) (or project-join normal form

(PJNF)) with respect to a set F of functional, multivalued, and join dependencies

if, for every nontrivial join dependency JD(R1, R2, ..., Rn) in F
+
 (that is, implied by

F), every Ri is a superkey of R.

 b. Describe the two desirable properties of decomposition? (8)

Answer:

The two desirable properties of decomposition are the dependency preservation property

and the nonadditive (or lossless) join property.

Dependency Preservation Property of a Decomposition

It would be useful if each functional dependency X→Y specified in F either appeared directly in

one of the relation schemas Ri in the decomposition D or could be inferred from the dependencies

that appear in some Ri. Informally, this is the dependency preservation condition. We want to

preserve the dependencies because each dependency in F represents a constraint on the database.

If one of the dependencies is not represented in some individual relation Ri of the decomposition,

we cannot enforce this constraint by dealing with an individual relation. We may have to join

multiple relations so as to include all attributes involved in that dependency.

It is not necessary that the exact dependencies specified in F appear themselves in individual

relations of the decomposition D. It is sufficient that the union of the dependencies that hold on

the individual relations in D be equivalent to F.

Given a set of dependencies F on R, the projection of F on Ri, denoted by πRi(F) where Ri is a

subset of R, is the set of dependencies X→Y in F
+
 such that the attributes in X ∪ Y are all

contained in Ri. Hence, the projection of F on each relation schema Ri in the decomposition D is

the set of functional dependencies in F
+
, the closure of F, such that all their left- and right-hand-

side attributes are in Ri. We say that a decomposition D = {R1, R2, ..., Rm} of R is dependency-

preserving with respect to F if the union of the projections of F on each Ri in D is equivalent to F;

that is, ((πR1(F)) ∪ ... ∪ (πRm(F)))
+
 = F

+
.

If a decomposition is not dependency-preserving, some dependency is lost in the decomposition.

To check that a lost dependency holds, we must take the JOIN of two or more relations in the

decomposition to get a relation that includes all left and right-hand-side attributes of the lost

dependency, and then check that the dependency holds on the result of the JOIN—an option that

is not practical.

DC62 DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 13

Nonadditive (Lossless) Join Property of a Decomposition

Another property that a decomposition D should possess is the nonadditive join property, which

ensures that no spurious tuples are generated when a NATURAL JOIN operation is applied to the

relations resulting from the decomposition. Because this is a property of a decomposition of

relation schemas, the condition of no spurious tuples should hold on every legal relation state—

that is, every relation state that satisfies the functional dependencies in F. Hence, the lossless join
property is always defined with respect to a specific set F of dependencies.

Formally, a decomposition D = {R1, R2, ..., Rm} of R has the lossless (nonadditive) join property

with respect to the set of dependencies F on R if, for every relation state r of R that satisfies F, the

following holds, where * is the NATURAL JOIN of all the relations in D: *(πR1(r), ..., πRm(r)) = r.

The word loss in lossless refers to loss of information, not to loss of tuples. If a decomposition
does not have the lossless join property, we may get additional spurious tuples after the

PROJECT (π) and NATURAL JOIN (*) operations are applied; these additional tuples represent

erroneous or invalid information. We prefer the term nonadditive join because it describes the

situation more accurately. Although the term lossless join has been popular in the literature, we

will henceforth use the term nonadditive join, which is self-explanatory and unambiguous. The

nonadditive join property ensures that no spurious tuples result after the application of PROJECT
and JOIN operations. We may, however, sometimes use the term lossy design to refer to a design

that represents a loss of information.

 Q.8 a. Why most databases are stored permanently on magnetic disk? Why are disks

 used to store online database files and not tapes? (5)

Answer:
Most databases are stored permanently (or persistently) on magnetic disk secondary storage, for

the following reasons:

 Generally, databases are too large to fit entirely in main memory.

 The circumstances that cause permanent loss of stored data arise less frequently for disk

secondary storage than for primary storage. Hence, we refer to disk—and other

secondary storage devices—as nonvolatile storage, whereas main memory is often

called volatile storage.

 The cost of storage per unit of data is an order of magnitude less for disk secondary
storage than for primary storage.

Magnetic tapes are frequently used as storage medium for backing up databases because storage

on tape costs even less than storage on disk. However, access to data on tape is quite slow. Data

stored on tapes is offline; that is, some intervention by an operator—or an automatic loading

device—to load a tape is needed before the data becomes available. In contrast, disks are online

devices that can be accessed directly at any time.

 b. What are the advantages of ordered files over unordered files? (5)

Answer:

Ordered records have some advantages over unordered files.

 First, reading the records in order of the ordering key values becomes extremely

efficient, because no sorting is required.

 Second, finding the next record from the current one in order of the ordering key

usually requires no additional block accesses, because the next record is in the

same block as the current one (unless the current record is the last one in the

block).

DC62 DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 14

 Third, using a search condition based on the value of an ordering key field results

in faster access when the binary search technique is used, which constitutes an

improvement over linear searches, although it is not often used for disk files.

 c. Describe the structure of internal nodes of a B
+
 tree of order p. (6)

Answer:

The structure of the internal nodes of a B
+
- tree of order p as shown in figure is as follows:

 Each internal node is of the form <P1, K1, P2, K2, ..., Pq – 1, Kq –1, Pq> where q ≤ p and

each Pi is a tree pointer.

 Within each internal node, K1 < K2 < ... < Kq−1.

 For all search field values X in the subtree pointed at by Pi, we have
Ki−1 < X ≤ Ki for 1 < i < q;
X ≤ Ki for i = 1;
and Ki−1 < X for i = q.

 Each internal node has at most p tree pointers.

 Each internal node, except the root, has at least [(p/2)] tree pointers. The root node has at

least two tree pointers if it is an internal node.

 An internal node with q pointers, q ≤ p, has q − 1 search field values.

Internal nodes of a B

+
-tree with q – 1 search values

 Q.9 a. Discuss the different phases of external sorting? Also give an outline of

the algorithm used? (8)

Answer:
External sorting refers to sorting algorithms that are suitable for large files of records stored on

disk that do not fit entirely in main memory, such as most database files. The typical external

sorting algorithm uses a sort-merge strategy, which starts by sorting small subfiles called runs,

of the main file and then merges the sorted runs, creating larger sorted subfiles that are merged in

turn. The sort-merge algorithm, like other database algorithms, requires buffer space in main

memory, where the actual sorting and merging of the runs is performed. The buffer space in main

memory is part of the DBMS cache—an area in the computer‘s main memory that is controlled

by the DBMS. The buffer space is divided into individual buffers, where each buffer is the same

size in bytes as the size of one disk block. Thus, one buffer can hold the contents of exactly one

disk block. The basic algorithm consists of two phases:

 The sorting phase: In the sorting phase, runs (portions or pieces) of the file that can fit

in the available buffer space are read into main memory, sorted using an internal sorting

algorithm, and written back to disk as temporary sorted subfiles (or runs). The size of

each run and the number of initial runs (nR) are dictated by the number of file blocks

(b) and the available buffer space (nB). For example, if the number of available main

memory buffers nB = 5 disk blocks and the size of the file b = 1024 disk blocks, then nR=

[(b/nB)] or 205 initial runs each of size 5 blocks (except the last run which will have only

DC62 DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 15

4 blocks). Hence, after the sorting phase, 205 sorted runs (or 205 sorted subfiles of the

original file) are stored as temporary subfiles on disk.

 The merging phase: In the merging phase, the sorted runs are merged during one or

more merge passes. Each merge pass can have one or more merge steps. The degree of

merging (dM) is the number of sorted subfiles that can be merged in each merge step.

During each merge step, one buffer block is needed to hold one disk block from each of

the sorted subfiles being merged, and one additional buffer is needed for containing one

disk block of the merge result, which will produce a larger sorted file that is the result of

merging several smaller sorted subfiles. Hence, dM is the smaller of (nB − 1) and nR, and

the number of merge passes is [(logdM(nR))]. In our example where nB = 5, dM = 4 (four-

way merging), so the 205 initial sorted runs would be merged 4 at a time in each step into

52 larger sorted subfiles at the end of the first merge pass. These 52 sorted files are then

merged 4 at a time into 13 sorted files, which are then merged into 4 sorted files, and then

finally into 1 fully sorted file, which means that four passes are needed. The minimum dM

of 2 gives the worst-case performance of the algorithm, which is

(2 * b) + (2 * (b * (log2 nR)))

Outline of the Sort-Merge algorithm for external sorting

set i ← 1;
j ← b; {size of the file in blocks}
k ← nB; {size of buffer in blocks}

m ← ⎡(j/k)⎤;

{Sorting Phase}
while (i ≤ m)

do {
read next k blocks of the file into the buffer or if there are less than k blocks
remaining, then read in the remaining blocks;
sort the records in the buffer and write as a temporary subfile;
i ← i + 1;

}

{Merging Phase: merge subfiles until only 1 remains}
set i ← 1;

p ← [logk–1m] {p is the number of passes for the merging phase}
j ← m;

while (i ≤ p)

do {
n ← 1;

q ← (j/(k–1)⎤ ; {number of subfiles to write in this pass}

while (n ≤ q)
do {

read next k–1 subfiles or remaining subfiles (from previous pass)
one block at a time; merge and write as new subfile one block at a

time;

DC62 DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 16

n ← n + 1;
}

j ← q;
i ← i + 1;

}

 b. Discuss the cost components for a cost function that is used to estimate

query execution cost. What are the different parameters that are used

in cost functions? Where is this information kept? (3+3+2)

Answer:

The cost of executing a query includes the following components:

1. Access cost to secondary storage: This is the cost of searching for, reading, and

writing data blocks that reside on secondary storage, mainly on disk. The cost of

searching for records in a file depends on the type of access structures on that file, such as

ordering, hashing, and primary or secondary indexes. In addition, factors such as whether

the file blocks are allocated contiguously on the same disk cylinder or scattered on the

disk affect the access cost.

2. Storage cost: This is the cost of storing any intermediate files that are

generated by an execution strategy for the query.

3. Computation cost: This is the cost of performing in-memory operations on the

data buffers during query execution. Such operations include searching for and sorting

records, merging records for a join, and performing computations on field values.

4. Memory usage cost: This is the cost pertaining to the number of memory

buffers needed during query execution.

5. Communication cost: This is the cost of shipping the query and its results from

the database site to the site or terminal where the query originated.

For large databases, the main emphasis is on minimizing the access cost to secondary

storage. Simple cost functions ignore other factors and compare different query execution

strategies in terms of the number of block transfers between disk and main memory. For

smaller databases, where most of the data in the files involved in the query can be

completely stored in memory, the emphasis is on minimizing computation cost. In

distributed databases, where many sites are involved, communication cost must be

minimized also. It is difficult to include all the cost components in a (weighted) cost

function because of the difficulty of assigning suitable weights to the cost components.

That is why some cost functions consider a single factor only—disk access

To estimate the costs of various execution strategies, we must keep track of any

information that is needed for the cost functions. This information may be stored in the

DBMS catalog, where it is accessed by the query optimizer. First, we must know the size

of each file. For a file whose records are all of the same type, the number of records

(tuples) (r), the (average) record size (R), and the number of blocks (b) (or close

estimates of them) are needed. The blocking factor (bfr) for the file may also be needed.

We must also keep track of the primary access method and the primary access attributes

for each file. The file records may be unordered, ordered by an attribute with or without a

primary or clustering index, or hashed on a key attribute. Information is kept on all

DC62 DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 17

secondary indexes and indexing attributes. The number of levels (x) of each multilevel

index (primary, secondary, or clustering) is needed for cost functions that estimate the

number of block accesses that occur during query execution. In some cost functions the

number of first-level index blocks is needed.

Another important parameter is the number of distinct values (d) of an attribute and its

selectivity (sl), which is the fraction of records satisfying an equality condition on the

attribute. This allows estimation of the selection cardinality (s = sl * r) of an attribute,

which is the average number of records that will satisfy an equality selection condition

on that attribute. For a key attribute, d = r, sl = 1/r and s = 1. For a nonkey attribute, by

making an assumption that the d distinct values are uniformly distributed among the

records, we estimate sl = (1/d) and so s = (r/d) (Note 21).

Information such as the number of index levels is easy to maintain because it does not

change very often. However, other information may change frequently; for example, the

number of records r in a file changes every time a record is inserted or deleted. The query

optimizer will need reasonably close but not necessarily completely up-to-the-minute

values of these parameters for use in estimating the cost of various execution strategies.

TEXT BOOK

I. Fundamentals of Database Systems, Elmasri, Navathe, Somayajulu, Gupta,

Pearson Education, 2006

