Q. 1 a. Verify the proposition $P \vee(P \wedge Q)$ is tautology.

Answer: allen values should be true
b. "A Boolean algebra is a complemented, distributive lattice" Justify the statement.

Answer:

Complemented Lattice in which every element has a complement, complement are unique. Every complemented distribute lattice has a unique orthocomplementation s is a fact a Boolean algebra.
c. Explain and compare Isomorphic graph and homorphic graph in detail with suitable examples

Answer:

$$
\begin{align*}
& \text { Isomorphic graph } \Rightarrow 2 \text { graph are } \tag{4}\\
& \text { said to be somurphic if there exist } \\
& \text { a 1-1 correspondence f from } v \text { to } v \text { 'such } \\
& \text { that if } v_{1}, v_{2} \in v \text { and } v_{1}^{\prime}, v_{2}^{\prime} \in v^{\prime} \text { and } \\
& f\left(v_{1}\right)=v_{1}^{\prime}, f\left(v_{2}\right)=v_{2}^{\prime} \text { then the no: of edges } \\
& \text { between } v_{1}, v_{2} \text { is the same as the no: } \\
& \text { of edges better } v_{1}^{\prime} \text { and } v_{2}^{\prime} \text {. ie } G \cong C^{\prime} \\
& \text { nom eomor chic Graph } \Rightarrow 2 \text { graph is sail } \\
& \text { to be Homeomorphic it they can be } \\
& \text { obtained from the same graph Cf by } \\
& \text { adding vertices. }
\end{align*}
$$

d. Explain Binary tree and draw two different binary trees with 5 nodes having maximum number of leaves.

Answer:

> Binary tree

- no: of vertices in always odd
- Pendant vertices $=(n+1) / 2$
- no: of Snternal vertices $\frac{n-11}{2}-1$
e. Construct the tree of the following algebraic expression.
(i) $(A+(B-(C+B))) \div(3 \div(2 * A) * 5)$
(ii) $(5-(3-(9 *(7-2)))) *(2-(3+(9+5)))$

Answer:

(ii)

f. Construct an algorithm to determine if two given trees are identical.

Answer:
2-trees are identical when they have same data sarrangement of Data in also same. To identify it 2 trees are same, we need to traverse Both tres simultaneously and while traversing we need to compare Data \& children of trees.
g. Prove that, any connected graph with minimum numbers of edges will form a tree.

Answer:
Yes, The min no: of edges for undirected connected graph in $(n-1)$ edges. To see thin, since the graph is connected then there musil be unique path from every vertex to every other vertex removing any edge will make the graph disconnected.
Q. 2 a. Discuss the Demorgan's law. How Tautologies is different from contradictions. Explain with the help of suitable example.
Answer:
Demoxgan's haw: \Rightarrow
$\overrightarrow{A \cup B}=\bar{A} \cap \bar{B}$ and $\}$ Prove It
Tautologies \Rightarrow If Truth values is always True
Contradictions \Rightarrow If Truth values is always false
b. Prove that $\mathbf{p} \rightarrow(\mathbf{q} \rightarrow \mathbf{r})$ and $(\mathbf{p} \wedge \neg \mathbf{r}) \rightarrow \neg \mathbf{q}$ are logically equivalent. answer: Construct Truth Table to prove.
c. Let (S, R) be a poses. Show that $\left(S, R^{-1}\right)$ is also a poser. (S, R^{-1}) is called as dual post of (S, R).
Answer:

- Since a Ra (Partial order Rel ${ }^{n}$), a $R^{-1} a\left(R^{-1}\right.$ is Retleaive

2. Let $a, b \in S$ where $a \neq b$. of $a R b, b R^{-1} a$ $a R b \Rightarrow b R_{-1} a \Rightarrow a R^{-1} b$
Thus $b R^{-1} a \Rightarrow a R^{-1} b\left(R^{-1}\right.$ is anti symmetric)
3. If $a R b \Rightarrow b R^{-1} a$ \& $b R c \Rightarrow c R^{-1} b$; by transitivity of Partial order $R l^{n}$, we have a $R c$. Hence $C R^{-1} a$. Thus $c R^{-1} b$ and $b R^{-1} a \Rightarrow$
$C R^{-1} a \subset R^{-1}$ is 7ranstive)
from $1,2,3 R^{-1}$ in Partial order Rel.?
Q. 3 a. Find DNF of the following identity without using truth table:

$$
\begin{aligned}
& \mathbf{P} \wedge(\mathbf{P} \rightarrow \mathbf{Q}) \\
& (\mathbf{P} \rightarrow \mathbf{Q}) \wedge(\neg \mathbf{P} \wedge \mathbf{Q}) \\
& (\mathbf{P} \wedge \neg(\mathbf{Q} \wedge \mathbf{R})) \vee(\mathbf{P} \rightarrow \mathbf{Q})
\end{aligned}
$$

Answer:
DNF

$$
\text { 1) } \begin{aligned}
& P \wedge(P \longrightarrow Q) \\
& \equiv P \wedge(\neg P \vee Q) \\
&(P \wedge \neg P) \vee(P \wedge Q)
\end{aligned}
$$

2) $P \rightarrow Q \equiv \neg P \vee Q$

$$
\therefore(P \rightarrow Q) \wedge(\neg P \wedge Q)
$$

$\equiv(\neg P \vee Q) \wedge(\neg P \wedge Q)$ Implication law
$\equiv(\neg P \wedge Q) \wedge(\neg P \vee Q)$ Commutative Law
$\equiv(\neg P \wedge Q \wedge \neg P) \cup(\neg P \wedge Q \wedge Q)$ distributive
$\equiv(\neg P \wedge \neg P \wedge Q) \vee(\neg P \wedge Q \wedge Q) \not A_{\text {ssociatioe }}$
$\equiv(\neg P \wedge Q) \cup(\neg P \wedge Q)$.
(C) $(P \wedge \neg(Q \wedge R)) \vee(P \rightarrow Q)$
$\equiv(P \wedge \neg(Q \wedge R)) \vee(\neg P \vee Q)$ Implication Law
$\equiv(P \wedge(\neg Q \vee \neg R)) \vee(\neg P \vee Q)$ De Morgans Law
$\equiv((P \wedge \neg Q) \cup(P \wedge \neg R)) \vee(\neg P \vee Q)$ distributive $\equiv(P \wedge \neg Q) \cup(P \wedge \neg R) \cup(\neg P \vee Q)$ Associative
b. Convert the following SOP expression to POS

$$
\begin{equation*}
\mathbf{A B C}+\mathbf{A B}^{\prime} \mathbf{C}^{\prime}+\mathbf{A B ^ { \prime }} \mathbf{C}+\mathbf{A B C} \mathbf{C}^{\prime}+\mathbf{A}^{\prime} \mathbf{B}^{\prime} \mathbf{C} \tag{6}
\end{equation*}
$$

Answer:

$$
(A+B+C)(A+\bar{B}+C)(A+\bar{B}+\bar{C})
$$

c. Define Boolean algebra and prove that the power set of any given set forms a Boolean algebra.

Answer:
explai boolean algebra
Q. 4 a. Let $A=\{1,2,3,4,6,9\}$ and relation R defined on A be "a divides b ". Draw Hesse diagram for this relation.
Answer:

b. Explain the term equivalence class and partition and let say R be an equivalence relation on set $A=\{6,7,8,9,10\}$ defined by $R=\{(6,6),(7,7),(8,8),(9,9),(10,10)$, $(6,7),(7,6),(8,9),(9,8),(9,10),(10,9),(8,10),(10,8)\}$. Find the equivalence classes of R and hence find the partition of A corresponding to R

Answer:
Equivalence class and partition:-

$$
\begin{aligned}
& A=\{6,7,8, a, 10] \\
& |6|=6,7=|7| \\
& |8|=8,9,10=|9|=|10| \\
& \text { Partition }=\{(6,7)(8,9,10)\}
\end{aligned}
$$

c. Explain the term chromatic number and prove that chromatic number of complete bipartite graph $k_{m, n}$ where m and n are positive integers is two

Answer:

Q. 5 a. Explain Dijkstra's algorithm and find the shortest path between the vertex a and vertex \boldsymbol{z} using Dijkstra's algorithm for the following graph.

Answer:

1) $P=\phi, T=\{$ all other vertices $\}$
$L(a)=0, L(x)=\infty$ for all $x \in T$ and $x \neq a$
2) find the voter v which has the smallest Label. This Label will be called the Permanent label of v. Now set $P=P \cup\{v\}$ and $T=T-\{v\}$ If $v=z$ then $L(z)$ is the Length of Shortest Path: \Rightarrow ans in $\mid a, b, J, z=6$
b. Explain Kruskal's algorithm and find the minimum spanning tree using Kruskal's algorithm for the following graph.

Answer:

c. Draw the state transition diagram for the finite set of states, $S=\left\{s_{0}, s_{1}, s_{2}, s_{3}\right)$, a finite set of input alphabets, $I=\{a, b, c\}$ and the transition function is given in table,

	Input		
State	a	\mathbf{b}	\mathbf{c}
\mathbf{s}_{0}	\mathbf{s}_{0}	\mathbf{s}_{0}	\mathbf{s}_{0}
\mathbf{s}_{1}	\mathbf{s}_{2}	\mathbf{s}_{3}	\mathbf{s}_{2}
\mathbf{s}_{2}	\mathbf{s}_{1}	$\mathbf{s}_{\mathbf{0}}$	\mathbf{s}_{3}
\mathbf{s}_{3}	\mathbf{s}_{3}	\mathbf{s}_{2}	\mathbf{s}_{3}

Answer:

Q. 6 a. Draw the diagraph of the machine whose state transition table is shown.

Remember to label the edges with the appropriate inputs. Finite set machine, $M=$ ($\mathrm{S}, \mathrm{I}, \mathrm{F}, \mathrm{s}_{\mathbf{0}}, \mathrm{F}$) where finite set of states, $\mathrm{S}=\left\{\mathrm{s}_{\mathbf{0}}, \mathrm{s}_{1}, \mathrm{~s}_{\mathbf{2}}, \mathrm{s}_{\mathbf{3}}\right\}$, finite set of input alphabets, $I=\{0,1\}$ and transition function is given in the table,

Answer:

b. Write short notes on the following:
(i) Pigeon hole principle
(ii) Planer graph
(iii) Equivalence relation
(iv) Complete bipartite graph

Answer:
Short notes:- Pigeonhole: -

- if n items are toput in m containers ad $n>R_{n}$ then at least one container must contain mare - Planer graph:- a graph that can be drawn without crosesing edge
- Equivalence Rel:- ic which is Retlexsine, Symmetry, Transitive
- Complete Bipartili: 2 set of vertex are there is a Graph. Eeach vertex of each sit is cemented to vertex of other set. But mot connected with in a cot
c. Find the number of ways in which we can put 6 letters in 10 envelops.

Answer: $\mathbf{1 0}^{\mathbf{6}}$
Q. 7 a. Find a nonempty set and a relation on the set that satisfy each of the following combination of properties. Simultaneously draw a diagraph of each relation.
(i) Reflexive and symmetric but not transitive
(ii) Reflexive and but not anti-symmetric

Answer:
b. Let \boldsymbol{f} and \boldsymbol{g} be the functions from the set of integers defined by $f(x)=2 x+3$ and $g(x)=3 x+2$. Determine the compositions of \boldsymbol{f} and \boldsymbol{g} and of \boldsymbol{g} and \boldsymbol{f}.

Answer:
c. How many elements are there in the power set of set $A=\{\phi,\{\phi\}\}$?

Answer: 2

