
CT13 (ALCCS) DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 1

 Q.1 a. What do you mean by functional dependency? Discuss with suitable

example.

Answer:

Functional dependencies play a key role in differentiating good database designs from

bad database designs.

A functional dependency is a type of constraint that is a generalization of the notion of

key,

Functional dependencies are constraints on the set of legal relations. They allow us to

express facts about the enterprise that we are modeling with our database.

The notion of functional dependency generalizes the notion of superkey. Consider a

relation schema R, and let α ⊆ R and β ⊆ R. The functional dependency

α →β

holds on schema R if, in any legal relation r(R), for all pairs of tuples t1 and t2 in r such

that t1[α] = t2[α], it is also the case that t1[β] = t2[β].

 b. Define various properties of transaction.

Answer:

The main properties ACID properties of the transactions are:

• Atomicity. Either all operations of the transaction are reflected properly in the database,

or none are.

• Consistency. Execution of a transaction in isolation (that is, with no other transaction

executing concurrently) preserves the consistency of the database.

• Isolation. each transaction is unaware of other transactions executing concurrently in

the system.

• Durability. After a transaction completes successfully, the changes it has made to the

database persist, even if there are system failures.

 c. What is lock? What are the various types of locks used for concurrency

control?

Answer:

There are various modes in which a data item may be locked. In this section, we restrict

our attention to two modes:

1. Shared. If a transaction Ti has obtained a shared-mode lock (denoted by S) on item

Q, then Ti can read, but cannot write, Q.
2. Exclusive. If a transaction Ti has obtained an exclusive-mode lock (denoted by X) on

item Q, then Ti can both read andwrite Q.

A transaction requests a shared lock on data item Q by executing the lock-S(Q)

instruction. Similarly, a transaction requests an exclusive lock through the lock-X(Q)

instruction. A transaction can unlock a data item Q by the unlock(Q) instruction.

 d. What is time stamp? How a system generates time stamp?

Answer:

With each transaction Ti in the system, we associate a unique fixed timestamp, denoted

by TS(Ti).

This timestamp is assigned by the database system before the transaction

CT13 (ALCCS) DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 2

Ti starts execution. If a transaction Ti has been assigned timestamp TS(Ti), and

a new transaction Tj enters the system, then TS(Ti) < TS(Tj).

if TS(Ti) < TS(Tj), then the system must ensure that the produced schedule is equivalent

to a serial schedule in which transaction Ti appears before transaction Tj .

• W-timestamp(Q) denotes the largest timestamp of any transaction that executed

write(Q) successfully.

• R-timestamp(Q) denotes the largest timestamp of any transaction that executed read(Q)

successfully.

 e. Explain the use of GROUP BY-clause and write an expression in SQL for

the following query which is based on the relational schema mentioned in

question number 2.

 Query: For each department, retrieve the department number, the

number of employees in the department, and their average salary.

Answer:

SQL has a GROUP BY-clause for specifying the grouping attributes, which must also

appear in the SELECT-clause

SELECT DNO, COUNT (*), AVG (SALARY) FROM EMPLOYEE GROUP BY DNO

– In Q20, the EMPLOYEE tuples are divided into groups--each group having the same

value for the grouping attribute DNO

– The COUNT and AVG functions are applied to each such group of tuples separately

– The SELECT-clause includes only the grouping attribute and the functions to be

applied on each group of tuples

– A join condition can be used in conjunction with grouping

 f. Consider a relational scheme R = (A, B, C, D, E) and following set of

multi valued dependencies:

 M = (A--> -->BC, B --> -->CD, E --> -->AD)

 Give a lossless join decomposition of scheme R into fourth normal form.

Answer:

CT13 (ALCCS) DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 3

 g. What is weak entity set? Explain with suitable example. (7 × 4)

Answer:

An entity set that does not have a primary key is referred to as a weak entity set.

• The existence of a weak entity set depends on the existence of a identifying entity set

– it must relate to the identifying entity set via a total, one-to-many relationship set from

the identifying to the weak entity set

– Identifying relationship depicted using a double diamond

• The discriminator (or partial key) of a weak entity set is the set of attributes that

distinguishes among all the entities of a weak entity set.

• The primary key of a weak entity set is formed by the primary key of the strong entity

set on which the weak entity set is existence dependent, plus the weak entity set’s

discriminator.

 Q.2 a. Consider the following relational database schema (3+3+3+3)

CT13 (ALCCS) DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 4

 Write an expression in SQL for each of the following queries

 (i) Retrieve the name and address of all employees who work for the

'Research' department.

 (ii) For every project located in 'Stafford', list the project number, the

controlling department number, and the department manager's last

name, address, and birthdate.

 (iii) Retrieve the name of each employee who works on all the projects

controlled by department number 5.

 (iv) Find the maximum salary, the minimum salary, and the average

salary among all employees.

Answer:

(i) SELECT FNAME, LNAME, ADDRESS

FROM EMPLOYEE, DEPARTMENT

WHERE DNAME='Research' AND DNUMBER=DNO

Similar to a SELECT-PROJECT-JOIN sequence of relational algebra operations

(DNAME=’Research’) is a selection condition (corresponds to a SELECT operation

in relational algebra)

(DNUMBER=DNO) is a join condition (corresponds to a SELECT operation in

relational algebra)

 OR

SELECT FNAME, LNAME, ADDRESS

FROM EMPLOYEE

WHERE DNO IN (SELECT DNUMBER

FROM DEPARTMENT

WHERE DNAME='Research')
(ii) SELECT PNUMBER, DNUM, LNAME, BDATE, ADDRESS

FROM PROJECT, DEPARTMENT, EMPLOYEE

WHERE DNUM=DNUMBER AND MGRSSN=SSN

AND PLOCATION='Stafford'

– In this, there are two join conditions

– The join condition DNUM=DNUMBER relates a project to its controlling department

– The join condition MGRSSN=SSN relates the controlling department to the employee

who

manages that department
(iii) SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE ((SELECT PNO

FROM WORKS_ON

WHERE SSN=ESSN) CONTAINS

(SELECT PNUMBER

FROM PROJECT

WHERE DNUM=5))

(iv) SELECT MAX (SALARY),

MIN (SALARY), AVG (SALARY)

FROM EMPLOYEE

 b. Explain the function of ORDER BY and HAVING Clause with suitable

example. (3+3)

CT13 (ALCCS) DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 5

Answer:

The ORDER BY clause is used to sort the tuples in a query result based on the values of

some attribute(s)

Example: In above mentioned relational schema; Retrieve a list of employees and the

projects each works in, ordered by the employee's department, and within each

department ordered alphabetically by employee last name. SELECT DNAME, LNAME,

FNAME, PNAME FROM DEPARTMENT, EMPLOYEE, WORKS_ON, PROJECT

WHERE DNUMBER=DNO AND SSN=ESSN AND PNO=PNUMBER ORDER BY

DNAME, LNAME

The default order is in ascending order of values

We can specify the keyword DESC if we want a descending order; the keyword ASC can

be used to explicitly specify ascending order, even though it is the default

THE HAVING-CLAUSE

Sometimes we want to retrieve the values of these functions for only those groups that

satisfy certain conditions

The HAVING-clause is used for specifying a selection condition on groups (rather than

on individual tuples)

In above mentioned relational schema; For each project on which more than two

employees work , retrieve the project number, project name, and the number of

employees who work on that project. SELECT PNUMBER, PNAME, COUNT (*)

FROM PROJECT, WORKS_ON WHERE PNUMBER=PNO GROUP BY PNUMBER,

PNAME HAVING COUNT (*) > 2

 Q.3 a. Draw the E-R diagram for the university system which includes

information about students, department, professors, courses, which

student are enrolled in which course, which professor are teaching in

which courses, student grades, which courses a department offers.

Consider suitable assumption wherever required. (10)

Answer:

CT13 (ALCCS) DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 6

 b. Explain the term Generalization and Specialization with suitable

example. (4)

Answer:

There are similarities between the customer entity set and the employee entity set in the

sense that they have several attributes in common. This commonality can be expressed by

generalization, which is a containment relationship that exists between a higher-level

entity set and one or more lower-level entity sets.

Generalization is a simple inversion of specialization.

Generalization proceeds from the recognition that a number of entity sets share some

common features

CT13 (ALCCS) DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 7

 c. Explain Multiple Granularity with suitable example. (4)

Answer:

Multiple Granularity

In the concurrency-control schemes described thus far, we have used each individual data

item as the unit on which synchronization is performed.

There are circumstances, however, where it would be advantageous to group several data

items, and to treat them as one individual synchronization unit. For example, if a

transaction Ti needs to access the entire database, and a locking protocol is used, then Ti

must lock each item in the database. Clearly, executing these locks istime consuming. It

would be better if Ti could issue a single lock request to lock the

CT13 (ALCCS) DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 8

entire database. On the other hand, if transaction Tj needs to access only a few data items,

it should not be required to lock the entire database, since otherwise concurrency is lost.

What is needed is a mechanism to allow the system to define multiple levels of

granularity.We can make one by allowing data items to be of various sizes and defining

a hierarchy of data granularities, where the small granularities are nested within larger

ones. Such a hierarchy can be represented graphically as a tree. Note that the tree that we

describe here is significantly different from that used by the tree protocol.

A nonleaf node of the multiple-granularity tree represents the data associated with its

descendants. In the tree protocol, each node is an independent data item.

As an illustration, consider the tree of Figure 16.16, which consists of four levels of

nodes. The highest level represents the entire database. Below it are nodes of type area;

the database consists of exactly these areas. Each area in turn has nodes of type file as its

children. Each area contains exactly those files that are its child nodes. No file is in more

than one area. Finally, each file has nodes of type record. As before, the file consists of

exactly those records that are its child nodes, and no record can be present in more than

one file.

Each node in the tree can be locked individually. As we did in the two-phase locking

protocol,we shall use shared and exclusive lock modes. When a transaction locks a node,

in either shared or exclusive mode, the transaction also has implicitly locked all the

descendants of that node in the same lock mode. For example, if transaction Ti gets an

explicit lock on file Fc of, in exclusive mode, then it has an implicit lock in exclusive

mode all the records belonging to that file. It does not need to lock the individual records

of Fc explicitly.

 Q.4 a. What are the purposes of normalization? Explain 3NF, 4NF and BCNF

with suitable example. (2+2+3+3)

Answer:

Normalization: Process of decomposing unsatisfactory "bad" relations by breaking

up their attributes into smaller relations

CT13 (ALCCS) DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 9

Normal form: Condition using keys and FDs of a relation to certify whether a

relation schema is in a particular normal form

2NF, 3NF, BCNF based on keys and FDs of a relation schema

4NF based on keys, multi-valued dependencies

Third Normal Form

Definition

Transitive functional dependency – if there a set of atribute Z that are neither a

primary or candidate key and both X Z and Y Z holds.

Examples:

SSN DMGRSSN is a transitive FD since

SSN DNUMBER and DNUMBER DMGRSSN hold

SSN ENAME is non-transitive since there is no set of

attributes X where SSN X and X ENAME

A relation schema R is in third normal form (3NF) if it is in 2NF and no non-prime

attribute A in R is transitively dependent on the primary key

BCNF (Boyce-Codd Normal Form)

A relation schema R is in Boyce-Codd Normal Form (BCNF) if whenever an FD X

A holds in R, then X is a superkey of R

Each normal form is strictly stronger than the previous one:

Every 2NF relation is in 1NF

Every 3NF relation is in 2NF

Every BCNF relation is in 3NF

There exist relations that are in 3NF but not in BCNF

The goal is to have each relation in BCNF (or 3NF)

CT13 (ALCCS) DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 10

Forth Normal Form
A table isin 4NF ,if it is in BCNF and it contains no multi-valued deprndencies.

A relation schema R is in 4NF , with respect to a set of dependencies F (that includes FD and multivalued

dependencies) if,for every multivalued dependency X->->Y in F+ , X is a superkey for R.

For example

 b. Define Serializability, Conflict Serializability and view Serializability

schedule with suitable example. (2+3+3)

Answer:
Serializability
The database system must control concurrent execution of transactions, to ensure that the database state

remains consistent. Before we examine how the database system can carry out this task, we must first

understand which schedules will ensure consistency, and which schedules will not.

Conflict Serializability
Let us consider a schedule S in which there are two consecutive instructions Ii and Ij, of transactions Ti and

Tj , respectively (i _= j). If Ii and Ij refer to different data items, then we can swap Ii and Ij without

affecting the results of any instruction in the schedule. However, if Ii and Ij refer to the same data item Q,

then the order of the two steps maymatter. Since we are dealing with only read and write instructions,

there are four cases that we need to consider:

1. Ii = read(Q), Ij = read(Q). The order of Ii and Ij does not matter, since the same value of Q is read by Ti

and Tj , regardless of the order.

2. Ii = read(Q), Ij = write(Q). If Ii comes before Ij, then Ti does not read the value of Q that is written by Tj

in instruction Ij. If Ij comes before Ii, then Ti reads

the value of Q that is written by Tj. Thus, the order of Ii and Ij matters.

3. Ii = write(Q), Ij = read(Q). The order of Ii and Ij matters for reasons similar to those of the previous case.

4. Ii = write(Q), Ij = write(Q). Since both instructions are write operations, theorder of these instructions

does not affect either Ti or Tj

Faculty Subject Committee

John

John

John

John

John

John

DBMS

Networking

MIS

DBMS

Networking

MIS

Placement

Placement

Placement

Scholarship

Scholarship

Scholarship

Faculty Course

John

John

John

DBMS

Networking

MIS

Faculty Committee

John

John

Placement

Scholarship

CT13 (ALCCS) DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 11

Faculty Committee
John

John

Placement

Scholarship

Faculty Course
John

John

John

DBMS

Networking

MIS

View Serializability
In this section, we consider a form of equivalence that is less stringent than conflict

equivalence, but that, like conflict equivalence, is based on only the read and write

operations of transactions.

Consider two schedules S and S_, where the same set of transactions participates in both

schedules. The schedules S and S_ are said to be view equivalent if three conditions are

met:
1. For each data item Q, if transaction Ti reads the initial value of Q in schedule S, then transaction Ti must,

in schedule S_, also read the initial value of Q.

2. For each data item Q, if transaction Ti executes read(Q) in schedule S, and if

that value was produced by a write(Q) operation executed by transaction Tj , then the read(Q) operation of

transaction Ti must, in schedule S_, also read the value of Q that was produced by the same write(Q)

operation of transaction Tj .

3. For each data item Q, the transaction (if any) that performs the final write(Q) operation in schedule S

must perform the final write(Q) operation in schedule S.

 Q.5 a. What are the various types of Distributed Database Systems? Explain

fragmentation in distributed database systems. (4+4)

Answer:
Unlike parallel systems, in which the processors are tightly coupled and constitute a single database system,

a distributed database system consists of loosely coupled sites that share no physical components.

Furthermore, the database systems that run on each site may have a substantial degree of mutual

independence.

Distributed databases as homogeneous or heterogeneous

Homogeneous and Heterogeneous Databases

CT13 (ALCCS) DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 12

In a homogeneous distributed database, all sites have identical database management system software,

are aware of one another, and agree to cooperate in processing users’ requests. In such a system, local sites

surrender a portion of their autonomy in terms of their right to change schemas or database management

system software.

That software must also cooperate with other sites in exchanging information about transactions, to make

transaction processing possible across multiple sites.

In contrast, in a heterogeneous distributed database, different sites may use different schemas, and

different database management system software. The sites may not be aware of one another, and they may

provide only limited facilities for cooperation in transaction processing. The differences in schemas are

often a major problem for query processing, while the divergence in software becomes a hindrance for

processing transactions that access multiple sites.

Data Fragmentation
If relation r is fragmented, r is divided into a number of fragments r1, r2, . . . , rn. These fragments contain

sufficient information to allow reconstruction of the original relation

r. There are two different schemes for fragmenting a relation: horizontal fragmentation and vertical

fragmentation. Horizontal fragmentation splits the relation by assigning each tuple of r to one or more

fragments. Vertical fragmentation splits the relation by decomposing the scheme R of relation r.

We shall illustrate these approaches by fragmenting the relation account, with the schema

Account-schema = (account-number, branch-name, balance)

In horizontal fragmentation, a relation r is partitioned into a number of subsets,

r1, r2, . . . , rn. Each tuple of relation r must belong to at least one of the fragments, so that the original

relation can be reconstructed, if needed.

As an illustration, the account relation can be divided into several different fragments, each of which

consists of tuples of accounts belonging to a particular branch.

If the banking system has only two branches—Hillside and Valleyview—then there are two different

fragments:

account1 = σbranch-name = ―Hillside‖ (account)

account2 = σbranch-name = ―Valleyview‖ (account)

Horizontal fragmentation is usually used to keep tuples at the sites where they are used the most, to

minimize data transfer.

In general, a horizontal fragment can be defined as a selection on the global relation r. That is,we use a

predicate Pi to construct fragment ri:

ri = σPi (r)

The two types of fragmentation can be applied to a single schema; for instance, the fragments obtained by

horizontally fragmenting a relation can be further partitioned vertically. Fragments can also be replicated.

In general, a fragment can be replicated, replicas of fragments can be fragmented further, and so on.

Say we have this relation
customer_id | Name | Area | Payment Type | Sex

1 | Bob | London | Credit card | Male

2 | Mike | Manchester | Cash | Male

3 | Ruby | London | Cash | Female

Horizontal Fragmentation are subsets of tuples (rows)
Fragment 1

customer_id | Name | Area | Payment Type | Sex

1 | Bob | London | Credit card | Male

2 | Mike | Manchester | Cash | Male

Fragment 2

customer_id | Name | Area | Payment Type | Sex

3 | Ruby | London | Cash | Female

Vertical fragmentation are subset of attributes
Fragment 1

customer_id | Name | Area | Sex

1 | Bob | London | Male

2 | Mike | Manchester | Male

3 | Ruby | London Female

Fragment 2

CT13 (ALCCS) DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 13

customer_id | Payment Type

1 | Credit card

2 | Cash

3 | Cash

 b. What is relational algebra? Explain its various operations. (2+4)

Answer:
The Relational Algebra
The relational algebra is a procedural query language. It consists of a set of operations that take one or two

relations as input and produce a new relation as their result. The fundamental operations in the relational

algebra are select, project, union, set difference,

Cartesian product, and rename. In addition to the fundamental operations, there are several other

operations—namely, set intersection, natural join, division, and assignment.

We will define these operations in terms of the fundamental operations.

Fundamental Operations
The select, project, and rename operations are called unary operations, because they operate on one

relation. The other three operations operate on pairs of relations and are, therefore, called binary operations

The Select Operation
The select operation selects tuples that satisfy a given predicate.We use the lowercase Greek letter sigma

(σ) to denote selection. The predicate appears as a subscript to σ.

The argument relation is in parentheses after the σ. Thus, to select those tuples of the loan relation where

the branch is ―Perryridge,‖ we write

σbranch-name =―Perryridge‖ (loan)

The Project Operation
Suppose we want to list all loan numbers and the amount of the loans, but do not care about the branch

name. The project operation allows us to produce this relation.

The project operation is a unary operation that returns its argument relation, with certain attributes left out.

Since a relation is a set, any duplicate rows are eliminated.

Projection is denoted by the uppercase Greek letter pi (Π).We list those attributes that we wish to appear in

the result as a subscript to Π. The argument relation follows in parentheses. Thus, we write the query to list

all loan numbers and the amount of the loan as

Πloan-number, amount(loan)

Composition of Relational Operations
The fact that the result of a relational operation is itself a relation is important. Consider the more

complicated query ―Find those customers who live in Harrison.‖ We write:

Πcustomer-name (σcustomer-city =―Harrison‖ (customer))

The Union Operation
Consider a query to find the names of all bank customers who have either an account or a loan or both.

Note that the customer relation does not contain the information, since a customer does not need to have

either an account or a loan at the bank. To answer this query, we need the information in the depositor

relation and in the borrower relation .We know how to find the names of all customers with a loan in the

bank:

Πcustomer-name (borrower)

The Set Difference Operation
The set-difference operation, denoted by −, allows us to find tuples that are in one relation but are not in

another. The expression r − s produces a relation containing those tuples in r but not in s.

We can find all customers of the bank who have an account but not a loan by writing

Πcustomer-name (depositor) − Πcustomer-name (borrower)

The Cartesian-Product Operation
The Cartesian-product operation, denoted by a cross (×), allows us to combine information from any two

relations.We write the Cartesian product of relations r1 and r2 as r1 × r2.

 c. Define check point and its impact on data base recovery. (4)

Answer:

CT13 (ALCCS) DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 14

Check points are those time points on which we save output all log records currently residing

in main memory onto stable storage.

For data base recovery, we just know the timing of check point or means name of check
point.

We used checkpoints to reduce the number of log records that the system must scan when it recovers from

a crash. Since we assumed no concurrency, it was necessary to consider only the following transactions

during recovery:

• Those transactions that started after the most recent checkpoint

• The one transaction, if any, that was active at the time of the most recent checkpoint

The situation is more complex when transactions can execute concurrently, since several transactions may

have been active at the time of the most recent checkpoint.

Restart Recovery
When the system recovers from a crash, it constructs two lists: The undo-list consists of transactions to be

undone, and the redo-list consists of transactions to be redone.

The system constructs the two lists as follows: Initially, they are both empty.

The system scans the log backward, examining each record, until it finds the first

<checkpoint> record:

• For each record found of the form <Ti commit>, it adds Ti to redo-list.

• For each record found of the form <Ti start>, if Ti is not in redo-list, then it adds Ti to undo-list.

When the system has examined all the appropriate log records, it checks the list L in the checkpoint record.

 Q.6 a. Describe Two Phase Locking protocol with suitable example. (8)

Answer:
One protocol that ensures serializability is the two-phase locking protocol. This protocol requires that

each transaction issue lock and unlock requests in two phases:

1. Growing phase. A transaction may obtain locks, but may not release any lock.

2. Shrinking phase. A transaction may release locks, but may not obtain any new locks.

Initially, a transaction is in the growing phase. The transaction acquires locks as needed. Once the

transaction releases a lock, it enters the shrinking phase, and it can issue no more lock requests.

For example, transactions T3 and T4 are two phase. On the other hand, transactions

T1 and T2 are not two phase. Note that the unlock instructions do not need to appear at the end of the

transaction. For example, in the case of transaction T3, we could move the unlock(B) instruction to just

after the lock-X(A) instruction, and still retain the two-phase locking property.

We can show that the two-phase locking protocol ensures conflict serializability.

CT13 (ALCCS) DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 15

Consider any transaction. The point in the schedule where the transaction has obtained its final lock (the

end of its growing phase) is called the lock point of the transaction. Now, transactions can be ordered

according to their lock points—this ordering is, in fact, a serializability ordering for the transactions. We

leave the proof as an exercise for you to do Two-phase locking does not ensure freedom from deadlock.

Observe that transactions T3 and T4 are two phase, but, in schedule 2 (Figure), they are deadlocked.

Cascading rollback may occur under two-phase locking. As an illustration, consider the partial schedule of

Figure 16.8. Each transaction observes the two-phase locking protocol, but the failure of T5 after the

read(A) step of T7 leads to cascading rollback of T6 and T7.

Cascading rollbacks can be avoided by a modification of two-phase locking called the strict two-phase

locking protocol. This protocol requires not only that locking be two phase, but also that all exclusive-

mode locks taken by a transaction be helduntil that transaction commits. This requirement ensures that any

data written by an uncommitted transaction are locked in exclusive mode until the transaction commits,

preventing any other transaction from reading the data.

Another variant of two-phase locking is the rigorous two-phase locking protocol, which requires that all

locks be held until the transaction commits.

 b. Describe Deadlock with suitable example and also explain about recovery

from the deadlock. (2+3)

Answer:
A system is in a deadlock state if there exists a set of transactions such that every transaction in the set is

waiting for another transaction in the set. More precisely, there exists a set of waiting transactions {T0, T1, .

. ., Tn} such that T0 is waiting for a data item that T1 holds, and T1 is waiting for a data item that T2 holds,

and . . ., and Tn−1 is waiting for a data item that Tn holds, and Tn is waiting for a data item that

T0 holds. None of the transactions can make progress in such a situation.

The only remedy to this undesirable situation is for the system to invoke some drastic action, such as

rolling back some of the transactions involved in the deadlock.

Rollback of a transaction may be partial: That is, a transaction may be rolled back to the point where it

obtained a lock whose release resolves the deadlock.

There are two principal methods for dealing with the deadlock problem. We canuse a deadlock prevention

protocol to ensure that the system will never enter a deadlock state. Alternatively, we can allow the system

to enter a deadlock state, and then try to recover by using a deadlock detection and deadlock recovery

scheme. As we shall see, both methods may result in transaction rollback. Prevention is commonly used if

CT13 (ALCCS) DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 16

the probability that the system would enter a deadlock state is relatively high; otherwise, detection and

recovery are more efficient.

Note that a detection and recovery scheme requires overhead that includes not only the run-time cost of

maintaining the necessary information and of executing the detection algorithm, but also the potential

losses inherent in recovery from a deadlock.

Recovery from Deadlock
When a detection algorithm determines that a deadlock exists, the system must recover from the deadlock.

The most common solution is to roll back one or more transactions to break the deadlock. Three actions

need to be taken:

1. Selection of a victim. Given a set of deadlocked transactions, we must determinewhich transaction (or

transactions) to roll back to break the deadlock.Weshould roll back those transactions that will incur the

minimum cost. Unfortunately, the term minimum cost is not a precise one. Many factors may determine the

cost of a rollback, including

a. How long the transaction has computed, and how much longer the transaction will compute before it

completes its designated task.

b. How many data items the transaction has used.

c. How many more data items the transaction needs for it to complete.

d. How many transactions will be involved in the rollback.

2. Rollback. Once we have decided that a particular transaction must be rolled back, we must determine

how far this transaction should be rolled back.

The simplest solution is a total rollback: Abort the transaction and then restart it. However, it is more

effective to roll back the transaction only as far as necessary to break the deadlock. Such partial rollback

requires the system to maintain additional information about the state of all the running transactions.

Specifically, the sequence of lock requests/grants and updates performed by the transaction needs to be

recorded. The deadlock detection mechanism should decide which locks the selected transaction needs to

release in order to break the deadlock. The selected transaction must be rolled back to the point where it

obtained the first of these locks, undoing all actions it took after that point. The recovery mechanism must

be capable of performing such partial rollbacks. Furthermore, the transactions must be capable of resuming

execution after a partial rollback. See the bibliographical notes for relevant references.

3. Starvation. In a system where the selection of victims is based primarily on cost factors, it may happen

that the same transaction is always picked as a victim. As a result, this transaction never completes its

designated task, thus there is starvation.

 c. Consider the universal relation;

 R =(A,B,C,D,E,F,G,H,I,J) And the set of functional dependencies F as

given below:

 F{AB→C, A→DE, B→F, F→GH, D→IJ}

 (i) Determine the key for R

 (ii) Decompose R into second normal form (3+2)

Answer:
For determine the key of R firstly,we need to decompose the FD’s an need to find out the Clouser of All

attribute.

Decomosition:

ABC

ADE (AD)(AE)

BF

FGH (FG) (FH)

DIJ (DI) (DJ)

Clouser Set of determinate (left side values):

A+={A,D,E,I,J}

B+={B,F,G,H}

F+={F,G,H}

D+={D,I,J}

So no single attribute will be key.

CT13 (ALCCS) DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 17

AB+={A,B,C,D,E,F,G,H,I,J)

So key=AB

(ii) For come in 2NF it need that ,every left hand side attribute is part of candidate key(AB)

So decomposition

R1= {A,B,C,D,E,F}

R2= {F,D,G,H,I,J}

And different decompositions are also possible.

 Q.7 Write the short notes on the following:

 (i) Query Optimization

 (ii) Time Stamp Based Concurrency Control

 (iii) Relational Model (6+6+6)

Answer:
(i) Alternative ways of evaluating a given query

 a. Equivalent expressions

 b. Different algorithms for each operation

An evaluation plan defines exactly what algorithm is used for each operation, and how the execution of

the operations is coordinated.

Cost difference between evaluation plans for a query can be enormous

 l E.g. seconds vs. days in some cases

Steps in cost-based query optimization

Generate logically equivalent expressions using equivalence rules

Annotate resultant expressions to get alternative query plans

Choose the cheapest plan based on estimated cost

Estimation of plan cost based on:

Statistical information about relations. Examples:

 number of tuples, number of distinct values for an attribute

Statistics estimation for intermediate results

 to compute cost of complex expressions

Cost formulae for algorithms, computed using statistics

CT13 (ALCCS) DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 18

(ii)

(iii) The relational model for database management is a database model based on first-
order predicate logic, first formulated and proposed in 1969 by Edgar F. Codd. In the
relational model of a database, all data is represented in terms of tuples, grouped into
relations. A database organized in terms of the relational model is a relational database.

CT13 (ALCCS) DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 19

The purpose of the relational model is to provide a declarative method for specifying data
and queries: users directly state what information the database contains and what
information they want from it, and let the database management system software take care
of describing data structures for storing the data and retrieval procedures for answering
queries.
Most relational databases use the SQL data definition and query language; these systems
implement what can be regarded as an engineering approximation to the relational model. A
table in an SQL database schema corresponds to a predicate variable; the contents of a
table to a relation; key constraints, other constraints, and SQL queries correspond to
predicates. However, SQL
The relational model's central idea is to describe a database as a collection of predicates
over a finite set of predicate variables, describing constraints on the possible values and
combinations of values. The content of the database at any given time is a finite (logical)
model of the database, i.e. a set of relations, one per predicate variable, such that all
predicates are satisfied. A request for information from the database (a database query) is
also a predicate.

CT13 (ALCCS) DATABASE MANAGEMENT SYSTEMS JUN 2015

© IETE 20

Other models are the hierarchical model and network model. Some systems using these
older architectures are still in use today in data centers with high data volume needs, or
where existing systems are so complex and abstract it would be cost-prohibitive to migrate to
systems employing the relational model; also of note are newer object-oriented databases.

TEXT BOOKS

1. Elmasri & Navathe, "Fundamental of Database Systems", Addison

Wesley, 5
th

 Edition, 2006

2. R Ramakrishnan & J Gehrke, Database Management Systems, McGraw

Hill, Third Edition, 2002

