Q.2	a.	Draw and explain the block diagram of Model of a Noisy Communication S	System.
Answe	er:	Refer Figure 3.7, page 111 of Text Book-I	(0)
	b.	The input to an RC low-pass network is a zero mean stationary Gaussian r process X (t) with $R_{xx}(\tau) = \exp(-\alpha \tau)$. Find the mean variance, and pso output Y (t).	andom 1 of the (8)
Answe	er:	Refer Example 3.11, page 106 of Text Book-I	
Q.3	a.	Explain Standard Deviation and Covariance in Statical Averages	(8)
Answe	er:	Refer Article 3.3.2, page 76 of Text Book-I	
	b.	Derive the expression for Chebhyshev's inequality for a random variable.	(8)
Answe	er:	Refer Equation 3.47, page 80 of Text Book-I	
Q.4	a.	Draw and explain tree diagram for Markoff source having 3 states.	(10)
Answe	er:	Refer pages 148-149 of Text Book-I	
	b.	Explain Entropy and Information Rate of Markoff Sources.	(6)
Answe	er:	Refer Article 4.2.5, page 151 of Text Book-I	
Q.5	a.	Enlist the properties of Shannon's Encoding Algorithm which yields a encoding procedure.	source (10)
Answe	er:	Refer page 158 of Text Book-I	
	b.	Explain Huffman Coding with an example.	(6)
Answe	er:	Refer Article 2.3 of Text Book-II	
Q.6	a.	Show that (i) $H(X Y) = H(X)$ when X and Y are statistically independent, a $H(X Y) = 0$ when $X = Y$.	and (ii) (8)
Answe	er:	Refer Exc. Problem 4.19, page 186 of Text Book-I	
	b.	Give one Application of the Channel Coding Theorem to Binary Sym Channels.	ımetric (8)

Answer: Refer Article 2.7 of Text Book-II

JUN 2015

Q.7 a.	A Gaussian channel has a bandwidth of 4 kHz and a two-sided noise p spectral density $\eta/2$ of 10^{-4} watt/Hz. The signal power at the receiver has maintained at a level less than or equal to $1/10$ of a milliwatt. Calculate capacity of this channel.	to be te the (8)
Answer:	Refer Exc. Problem 4.24, page 187 of Text Book-I	
b.	Explain in detail Mutual Information for Continuous Ensembles.	(8)
Answer:	Refer Article 2.8 of Text Book-II	
Q.8 a.	Explain with block diagram Error Control coding by showing channel bit probability and message bit error probability.	error (8)
Answer:	Refer Figure 9.1, page 444 of Text Book-I	
b.	Design a linear block code with a minimum distance of three and a message size of eight bits.	block (8)
Answer:	Refer Example 9.4, page 457 of Text Book-I	
Q.9 a.	Discuss about the Algebraic Structure of Cyclic codes.	(8)
Answer:	Refer Article 9.3.1, page 462 of Text Book-I	
b.	Explain Maximum Likelihood Decoding of Convolutional Codes.	(8)
Answer:	Refer Article 8.6, page 403 of Text Book-II	
	TEXT BOOKS	

- I. Digital and Analog Communication Systems by K. Sam Shanmugam, John Wiley India Edition, 2007 reprint
- II. Digital Communications by Simon Haykin, John Wiley & Sons, Student Edition