AE72 MICROWAVE THEORY AND TECHNIQUES JUN 2015

Q.2 a. Draw the profile of SWR versus reflection coefficient. A transmission line has a characteristic impedance of $50 + j \ 0.01 \ \Omega$ and is terminated in a load line impedance of 73-j42.5 Ω . Calculate: (i) The reflection coefficient (ii) the standing wave ratio. (8)

Answer: Refer Figure 3.3.4, Example 3.3.1, Page 75 of Text Book - I

b. Enlists the significant features of the normalized impedance for a lossless line. (8)

Answer: Refer Article – Normalized Impedance, Page 80 of Text Book - I

Q.3 a. For a rectangular waveguide, show that the propagation modes depend on its physical dimensions (10)

Answer: Refer Equation 4.1.54, Pages 107-109 of Text Book - I

b. An air-filled circular wave guide has a radius of 2 cm and is to carry energy at a frequency of 10 GHz. Find all the TE_{np} and TM_{np} modes for which energy transmission is possible. (6)

Answer: Refer Example 4.2.2, Page 129 of Text Book - I

Q.4 a. Derive and explain the significance of S Matrix of a Directional Coupler. (8)

Answer: Refer Article 4.5.2, Pages 151-152 of Text Book - I

b. Draw the structure of Hybrid Ring. Obtain its S-matrix. Why is it also called Rat-Race circuit? (8)

Answer: Refer Pages 135-136 of Text Book - I

Q.5 a. Describe in detail the principles of the following terms: Gunn Effect, Two valley model theory and High Field Domain theory. (10)

Answer: Refer Articles 7.1.2, 7.2.2, 7.2.3 Pages 271, 272, 274, 275, 276 of Text Book - I

b. An n-type GaAs Gunn diode has the following parameters: (6) $V_d = 2.5 \times 10^5 \text{ m/s}$ $|\mu_n| = 0.015 \text{ m}^2/\text{V.s}$ $\varepsilon_r = 13.1$ Determine the criterion for classifying the modes of operation.

Answer: Refer Example 7.3.1, Pages 286-287 of Text Book - I

AE72 MICROWAVE THEORY AND TECHNIQUES JUN 2015

Q.6 a. Derive an expression for beam-coupling coefficient of the input cavity gap in Klystron and also draw the profile of beam coupling coefficient versus gap transit angle. (10)

Answer: Refer Figure 9.2.7, Equation 9.2.16, Pages 345-347 of Text Book-I

b. Explain the Amplification process in helix type travelling-wave tube. (6)

Answer: Refer Article 9.5.2, Pages 388-389 of Text Book - I

Q.7 a. Show that the Hartree anode voltage equation is a function of the magnetic flux density and the spacing between the cathode and anode. (10)

Answer: Refer Equation 10.1.54, Pages 439-441 of Text Book - I

b. An Amplitron has the following operating parameters: (4)
V₀=15 kV, I₀ = 3A, B₀ = 0.2 Wb/m²
f = 8 GHz, Z₀ = 50 Ω.
Determine: The dc electron-beam velocity, the electron beam phase constant, the cyclotron angular frequency, the cyclotron phase constant and the gain parameter.

Answer: Refer Example 10.3.1, Pages 460-461 of Text Book - I

Q.8	a.	Describe the following characteristics of Microstrip Lines -	(10)
		(i) Effective Dielectric Constant.	
		(ii) Impedance Equation	
		(iii) Microstrip Lines – Dielectric Losses	
		(iv) Microstrip Lines – Ohmic Losses	

Answer: Refer Pages 474, 475, 478-481 of Text Book - I

b. Describe Attenuation Losses taking place in parallel strip lines. (6)

Answer: Refer Article 11.2.3, Page 487 of Text Book - I

- Q.9 a. List the basic characteristics required for an ideal substrate material. (8)
- Answer: Refer Article 12.1.1, Page 498 of Text Book I
 - b. Explain the Etching and photoresist MMIC fabrication technique. (8)

Answer: Refer Article 12.2.1, Pages 503, 504 of Text Book - I

TEXT BOOK

I. Microwave Devices and Circuits, Samuel Y. Liao, 3rd Edition, Prentice-Hall of India, New Delhi, 2006