Solutions

Q. 2 a. Explain the Huffman encoding algorithm. Using this algorithm compute the Huffman code for a discrete memoryless source. The source has an alphabet of five symbols with their probabilities given below:

Symbol	S_{1}	$\mathrm{~s}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~s}_{5}$
Probability	0.55	0.15	0.15	0.1	0.05

Find the coding efficiency.
Answer: Refer pages from 25 to 27 of Text Book
b. Define channel capacity. Derive an expression for the channel capacity of a binary symmetric channel.

Answer: Refer page 35 of Text Book
Q. 3 a. Compare natural sampling, instantaneous sampling and flat-top sampling techniques.

Answer: Refer pages from 154 to 158 of Text Book
b. Write short note on :
(i) Pulse Amplitude Modulation
(ii) TDM

Answer: (i) Refer page 161 of Text Book
(ii) Refer pages from 162 \& 163 of Text Book
Q. 4 a. Represent 0110100010 in NRZ unipolar format, Non return to zero polar format, Non return to zero bipolar format \& Manchester. What is the advantage of Manchester coding over other types?
(8)

Answer: Refer page 234 of Text Book
b. What is Eye Pattern? Explain the eye pattern with the help of distorted binary wave.

Answer: Refer page 261 of Text Book
Q. 5 a. (i) The BPSK modulation is used in a channel that adds white noise with singlesided PSD $N_{0}=10^{-10} \mathrm{~W} / \mathrm{Hz}$. Calculate the amplitude A of the carrier signal to give P_{e} $=10^{-6}$ for a data rate of 100 Kbps .
(ii)Find E_{b} / N_{0} in dB to provide $P_{e}=10^{-6}$ for BPSK and coherent FSK.(4)

Answer: (i)

$$
\therefore A=\left[2 N_{\mathrm{o}}\left(\frac{E_{\mathrm{b}}}{N_{\mathrm{o}}}\right) R\right]^{1 / 2}
$$

$$
A=\left[2 \times 10^{-10} \times 11.32 \times 10^{5}\right]^{1 / 2}=1.505 \mathrm{mv}
$$

(ii)

For BPSK

Where:

$$
\xi=E_{l} / N_{0}
$$

$$
\therefore \xi=11.32=10.54 d B
$$

 i.e., 13.54 dB .
b. What is a CPFSK modulation scheme? How it is related with the MSK modulation scheme? Explain MSK transmission and reception. (8)

$$
\begin{aligned}
& P_{e}=\frac{i^{-E_{1} A_{8}}}{2\left(-\left(\frac{R_{b}}{N_{8}}\right)\right.} \\
& 10^{-6}=\frac{e^{-4}}{2 \sqrt{\pi k}}
\end{aligned}
$$

Answer: MSK TRANSMITTER AND RECEIVER-

Q. 6 a. Explain the quantization error and derive an expression for maximum signal to noise ratio in PCM system that uses linear quantization.

Answer: Refer page 192 of Text Book
b. Discuss the methods of implementing adaptive equalizers.

Answer: Refer page 265 of Text Book
Q. 7 a. What is frequency hop spread spectrum? Differentiate and illustrate the slow frequency hopping \& fast frequency hopping.
(8)
b. Determine the processing gain \& jamming margin in a DSSS system, given $\mathrm{T}_{\mathrm{b}}=$ $4.095 \mathrm{~m}-\mathrm{sec}, \mathrm{T}_{\mathrm{c}}=1 \mu \mathrm{sec}$. Assume a maximum of $\mathrm{P}_{\mathrm{e}} \leq 10^{-5}$. Also find number of feedback stages required.
Q. 8 a. What is a matched filter? Derive the condition for maximum output of a matched filter.

Answer:

Matched filter is an optimum filter which will maximize output SNR to minimize the probability of error.
Let
$\mathrm{x}(\mathrm{t})=$ input signal to the matched filter
$h(t)=$ impulse response of the matched filter
$\mathrm{w}(\mathrm{t})=$ white noise with power spectral density $\mathrm{No} / 2$
$)(t)=$ known signal
Input to the matched filter is given by
$x(t)=)(t)+w(t) \quad 0 \delta t \delta T$
science the filter is linear, the resulting output $\mathrm{y}(\mathrm{t})$ is given by
$y(t)=l_{0}(t)+n(t)$
where $)_{0}(t)$ and $\mathrm{n}(\mathrm{t})$ are produced by the signal and noise components of the input $\mathrm{x}(\mathrm{t})$.

White Noise w(t)

The signal to noise ratio at the output of the matched filter at $\mathrm{t}=\mathrm{T}$ is

$$
(S N R)_{0}=\frac{| |^{2}}{E\left[n_{2}(t)\right]} \cdot \cdots(1)
$$

aim is to find the condition which maximize the SNR
let
$\left.\nu_{0}(t) \square\right)_{0}(f)$
$h(t) \square H(f)$
are the Fourier transform pairs, hence the output signal $)_{0}(t)$ is given by

$$
l_{0}(t)=\quad+H(f) \sqrt{ }(f) \exp (j 2 \square f t) d f
$$

output at $t=T$ is
$\left.|\quad|^{2}\right|_{I}+\left.H(f) \sqrt{ }(f) \exp (j 2 \square f T) d f\right|^{2} \cdot \cdots(2)$
For the receiver input noise with bsd (power spectral density) $\mathrm{N}_{\mathrm{o}} / 2$ the receiver output noise esd is given by
$S_{N}(f)=\frac{h_{1}}{2}|H(f)| \cdot(3)$
and the noise power is given by

$$
\begin{aligned}
E\left[n^{2}(t)\right] & ={\underset{t}{N}}(f) d f \\
& =\frac{H_{2}}{2}+\left.H(f)\right|^{2} d f \cdot \cdots(4)
\end{aligned}
$$

substituting the values of eqns (2) \& (4) in (1) we get

$$
(S N R)_{0}=\frac{|+H(f) \sqrt{ }(f) \exp (j 2 \square f T) d f|^{2}}{\frac{N_{0}}{2}+\left.H H(f)\right|^{2} d t} \cdot
$$

using Schwarz's inequality

$$
\left.\right|_{i}+\left.\left.X_{1}(f) X_{2}(f) d f \oint\right|_{\mathrm{t}} ^{2} H X_{1}(f)\right|^{2} d f \quad{ }_{\mathrm{t}} \quad+\left.\left.1\right|_{2}(f)\right|^{2} d f \cdot \cdots \text { (6) }
$$

Eqn (6) is equal when $X_{1}(f)=\mathrm{kX}_{2} *(f)$
$\operatorname{let}_{1(f)}=\mathbf{H}(f)$
$\& \mathbf{X}_{2}(\mathbf{f})=\sqrt{ }(f) \exp (j 2 \square f T)$
under equality condition
$\mathrm{H}(\mathrm{f})=\mathrm{K} \sqrt{ } \cdot(f) \exp (\uparrow j 2 \square f T) \cdot \cdot \cdot(7)$
Thus substituting in (6) we get the value

$$
\left.|+H(f) \sqrt{ }(f) \exp (j 2 \square f T) d f \delta|_{I}^{2} \quad H H(f)\right|^{2} d f \quad+\left.\mathrm{V}^{2}(f) \quad\right|^{2} d f
$$

substituting in eqn (5) and simplifying

$$
(S N R)_{0} \delta \quad \frac{2}{N_{1}}+\mathrm{H}(f) \quad \mathrm{I}^{2} d f
$$

Using Rayleigh's energy theorem

$$
\begin{aligned}
& +\|\left._{(t)}\right|^{2} d t={ }_{t}+\left.\mathrm{N}(f)\right|^{2} d f=E, \text { energy of the signal } \\
& (S N R)_{0, \max }=\frac{2 E}{N_{2}} \quad \cdot \quad \cdot(8)
\end{aligned}
$$

Under maximum SNR condition, the transfer function is given by ($\mathrm{k}=1$), eqn (7)

$$
H_{\text {opt }}(f)=\sqrt{*}(f) \exp (\downarrow j 2 \square f T)
$$

The impulse response in time domain is given by

$$
\begin{aligned}
h_{o v s}(t) & =H^{*}(f) \exp [\upharpoonleft j 2 \square f T] \exp (j 2 \square f t) d f \\
& =)^{\ddagger}(T \downharpoonright t)
\end{aligned}
$$

Thus the impulse response is folded and shifted version of the input signal $)(t)$
b. Write short note on detection of signals with unknown phase in noise.

Answer: Refer section 3.9, page 96 of Text Book
Q. 9 Write short note on:
(i) Light wave transmission link
(ii) Digital Radio

Answer: Refer pages 225 \& 350 of Text Book

TEXT BOOK

Digital communications, Wiley Student Edition, Simon Haykin

