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Solution Marks 

 Q.2 a. Determine power and energy of the following signals  (4) 

  (i) 


tAe)t(x
tj 0  

(ii) x(t) =sin(t) 

Answer: 

i)  tAetx
tjw0)(  















T

T

T

T

tjw

T

T

TdtAdttx

etx

dttxI

21)(

1)(

)(

22

2

0  

2]
2

[

][

A
T

I
ltP

IltE

T

T









 

Power is finite , it is a power signal 

ii) x(t) =sinwt 
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      Power is finite , it is a power signal 

 b.   Find the convolution of X1(t) = A;   0 ≤ t ≤ T    and  X2(t)= A;   0 ≤ t ≤ 

T  

Answer: 
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 c. For the system y(n) = ax[n] + b x(n-1) determine whether the system is  

                 (i)   Linear  

   (ii)  Causal  

   (iii) Stable  

   (iv) Time-invariant  

   (v)  Memory less 

Answer: 

 
  For each of the following systems determine whether the system is  

a) Linear b) Causal c) Stable d) Time- invariant e) Memory less 

 

i)      T[x[n]] = ax[n] + b x(n-1) 
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a) Linear: Let x(n) = x1(n) output y1 (n) = ax1(n)+bx1(n-1) 

Let x(n) = x2(n) output y2 (n) = ax2(n)+bx2(n-1) 

Let x(n) = x3(n) = x1(n) + x2(n) 

Output y3(n) = ax3(n)+bx3(n-1) 

                       =a[x1(n) + x2(n)]+b[x1(n-1)+x2(n-1)] 

y3(n) = y1(n) + y2(n) 

 Therefore system is linear. 

b) Causal: Output depends  on present and past values of input. Therefore system 

is causal. 

c) Stable: Let xMnx ][  output 

]1[][.)1(][][  nxbnxanbxnaxny  

As ‘a’ and ‘b’ are constants of finite value output ][ny is bounded and the 

system is stable. 

d) Time – invariant: 

Given T[x[n]] = y[n] = ax[n] + b x1(n-1) 

 Let x[n] = x1[n] 

Output y1[n] = ax1[n] +b bx1(n-1) 

Shift output y1*n+ by ‘k’ units 

y1[n – k] = ax1 [n – k] +  bx1(n-k-1) 

Let x[n] = x2[n] = x1[n – k]  

y2[n] = ax2 [n] + b 

y2[n]  = ax1[n – k] + b 

y2[n] = y1[n – k] 

Therefore system is time – invariant. 

e) Memory: 

Output depends only on present and past value of input. Therefore system is 
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memory system.      

 Q.3 a. Determine the Fourier’s Series representation for signal (4)

 
   )6sin(4)2cos()( tttx   

Answer: 

 

Given Signal )6sin(4)2cos()( tttx    

 Period of cos(2πt) is T1 = 1 

 Period of sin(6πt) is T2 =1/3 

  The Fundamental period x(t) is T = 1sec 

      Expressing x(t) as  
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  b. State and prove the following properties of continuous time and 

periodic  signals  (8) 

   (i)  Time shifting 

   (ii) Time Reversal  
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Answer: 
Time shifting 

When a time shift is applied to a periodic signal x(t), the period T of the  signal is preserved. 

The Fourier series coefficients bk of the resulting signal y(t)=x(t-t0) may be expressed as 

dtettx
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b
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Letting 0tt  in the integral, and noting that the new variable τ will also range over an 

interval of duration T, we obtain 
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Where ak is the kth Fourier series coefficient of x(t). that is , if 
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One consequence of this property is that, when a periodic signal is shifted in time, the 

magnitudes of its Fourier series coefficients remain unaltered. That is |bk|=|ak|. 

Time Reversal 

The period T of a periodic signal x(t) also remains unchanged when the signal undergoes 

time reversal. To determine the Fourier series coefficients of y(t)=x(-t). 







k

Ttjk

keatx /2)(   

Let k=-m 









m

Ttjm

meatxty /2)()(   

bk = a-k.     ,)( k

FS

atx   

Then 

 

 

 

 

1 

 

 

 

 

 

 

 

 

 

3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 

 

 

 

 

 

 

 

 

 

 

3 

 



AE57/AC57/AT57/AE112                         SIGNALS AND SYSTEMS JUN 2015 

 

© IETE                                                                                                                                 6 

k

FS

atx  )( . 

  c. Find the Fourier Series representation of the signal x(t) shown in 

fig.1(4) 

  

 
Fig.1 

Answer: 
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 Q.4 a. State and prove the following properties of continuous signal 

Fourier Transform:  (1 

   (i)  Time shifting property 

   (ii) Frequency differentiation property 

Answer: 

If     )()( jXtx FT  

then 
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   0)()( 0

tjFT ejXttx
 

  

Shift in time domain will result in multiplying by an exponential in frequency domain 

Proof. 
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ii). Frequency differentiation Property: 

Statement: 

If    )()( jXtx FT  

Then 
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d
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Differentiating signal in frequency domain is same as multiplying by t in time domain 

Proof. 
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 Therefore    )()( jwX
dw

d
tjtx FT  

              b.  Find the FT of the signal x(t) as shown in fig.2 (6) 

 

 

Fig.2 

Answer: 

 
Let  x1(t)=A rect(t)↔A sinc(f)=X1(jw)  Here A=A and T=1 

Given signal x(t) can be expressed as 

X(t)= x1(t-1.5)+ x1(t+1.5) 

Therefore the Fourier transform is 

FT{x(t)}= X1(jw)  [e-j(1.5t) +ej(1.5)t] 

X(jw)= A sinc(f) [e-j(1.5t) +ej(1.5)t] 

X(jw)= 2A sinc(f) cos(1.5t)  

Note: Alternative answers are also possible. 
    

 Q.5  a. Find a Fourier transformer ||][ nanx  , 1|a|   (6) 
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  b. A casual LTI is described by the difference equation  
 

          1nx2ny1nyny   
 

   (i) Find the system function      zXzYzH  for this system. Plot 

the poles and zeros of  zH and indicate region of convergence. 
 

   (ii) Find the unit sample response of system. 2) 

Answer: 
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  c. For the system equation y(n) - 4 y(n-1), = x(n)  find (4) 

   (i)  The transfer function and 

   (ii) Impulse response     

Answer: 
For the system equation  y(n) - 4 y(n-1), = x(n)  find the transfer function and impulse 

response. 

Solution: 
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Given   y 

Taking Fourier transform 
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 Q.6 a. Find the frequency response of an LTI system having impulse 

response 

   h(t)=(1+t)e
-2t

 u(t)  (6) 

Answer: 

Given  h(t)=(1-t)e-2t u(t) 
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  b. State and prove sampling theorem for Low pass signal. (6) 

 

Answer: 
Sampling theorem. 

Statement: Let m(t) is a message signal band limited to fmHz, if this signal is sampled at a 

rate
ms ff 2   then we can reconstruct the message signals from the sampled value with 

minimum distortion. 

i.e 
ms ff 2  

where fs is sampling frequency 

 

 

 

 

 

 

4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 

 

 

 

 

 

 

 

 

 

 

3 

 

 

 

 

 

 

 

2 

 

 

 



AE57/AC57/AT57/AE112                         SIGNALS AND SYSTEMS JUN 2015 

 

© IETE                                                                                                                                 11 

and fm is maximum message frequency 

Let m(t)=message signal 
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    is periodic delta function with Fourier series 
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Sampled signal S(t)=m(t)∂T(t)   

Multiplication in time domain is same as convolution in frequency domain 
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Spectrum of sampled signal is periodic with period fs. 
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  c. Determine the Nyquist rate for the following signals (4) 

   (i) x(t) = cos(600πt)+ sin(800πt) 

   (ii) x(t) = cos(600πt) cos(800πt) 

Answer: 
Determine the Nyquist rate for the following signals 

i) x(t)=cos(600πt)+ sin(800πt) 

              f1=300 Hz and 

              f2=400 Hz 

              fNyq=2fm(max)=2x400=800Hz 

ii) x(t)= cos(600πt) cos(800πt) 

=0.5*cos(1400 πt)+cos(200 πtt)+ 

              f1=700 Hz and 

              f2=100 Hz 

              fNyq=2fm(max)=2x700=1400Hz 

 

 Q.7 a. Find the Laplace transform of the following signals.  (8) 

  (i)   X(t)=te
-2t

u(t)  

  (ii)  X(t) =e
-3t 

cos(5t) u(t)    

 

Answer: 
i) X(t)=te-2tu(t) 
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ii.) X(t) = e-3t cos(5t) u(t) 
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  b. Find the Inverse Laplace transform of the following X(s)  (4) 
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  c. State initial and final value theorem in Laplace transform. 

Answer: 
 

Initial Value theorem: 

The initial value of x(t) i.e. x(0) directly from the transform X(S) without finding the inverse 

)()0( ssXltx
s 

   

Final value theorem: 

The value of x(t) as t may be found directly from the LT X(s) 
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 Q.8   a. Find the Z-transform of the following sequences and find their 
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ROC  
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  b.  State and prove the convolution property of Z- transform (4) 

 

Answer: 

Convolution property: 

Statement:  convolving two signals in time domain is same as multiplying their Z-

transforms in Z domain. 
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  c. Find the Inverse Z-transform of  (6) 
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Solution: 
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Solving for A & B. A = 1 B = -1 
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Q.9    a. The random variable x is expresses as its density function (8) 
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    b. What are the properties of wide sense stationary process?  (3) 

 

Answer: 
i) A random process X(t) is called wide sense stationary if it satisfies 

a. Mean of the process is constant 

b. autocorrelation function is independent of time  

                    c.    variance of the process is constant 

 

    c. Write properties of power spectral density.  

Answer: 

 

Article 1.7 Text book – II, Page 46 – 47. 
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