Solution

Q. 2 a. Determine power and energy of the following signals (4)
(i) $\mathrm{x}(\mathrm{t})=\mathrm{Ae}^{\mathrm{j} \omega_{0} \mathrm{t}}-\infty<\mathrm{t}<\infty$
(ii) $\mathbf{x}(\mathrm{t})=\sin (\omega \mathrm{t})$

Answer:
i) $\quad x(t)=A e^{j w_{0} t}-\infty<t<\infty$

$$
I=\int_{-T}^{T}|x(t)|^{2} d t
$$

$$
|x(t)|=\left|e^{j w_{0} t}\right|=1
$$

$$
=\int_{-T}^{T}|x(t)|^{2} d t=A^{2} \int_{-T}^{T} 1 d t=2 T
$$

$$
\begin{aligned}
& E=\underset{T \rightarrow \infty}{\operatorname{lt}}[I]=\infty \\
& P=\underset{T \rightarrow \infty}{\operatorname{lt}}\left[\frac{I}{2 T}\right]=A^{2}
\end{aligned}
$$

Power is finite, it is a power signal
ii) $x(t)=\sin w t$

$$
\begin{aligned}
I & =\int_{T}|x(t)|^{2} d t \\
& =\int_{T} \sin ^{2} w t d t \\
& =\int_{T} \frac{(1-\cos 2 w t)}{2} d t=\int_{T} \frac{1}{2} d t-\frac{1}{2} \int_{T} \cos 2 w t d t \\
& =T / 2
\end{aligned}
$$

$$
E=\underset{T \rightarrow \infty}{l t}[I]=\infty
$$

$$
P=\operatorname{lt}_{T \rightarrow \infty}\left[\frac{I}{T}\right]=\frac{1}{2}
$$

Power is finite, it is a power signal
b. Find the convolution of $X_{1}(t)=A ; \quad 0 \leq t \leq T \quad$ and $X_{2}(t)=A ; \quad 0 \leq t \leq$

Answer:

$$
y(t)=\left\{\begin{array}{cl}
A^{2} t & 0 \leq t \leq T \\
A^{2}(2 T-t) & T \leq t \leq 2 T \\
0 & \text { otherwise }
\end{array}\right.
$$

c. For the $\operatorname{system} \mathbf{y}(\mathrm{n})=\mathbf{a x}[\mathbf{n}]+\mathbf{b} \mathbf{x}(\mathbf{n}-1)$ determine whether the system is
(i) Linear
(ii) Causal
(iii) Stable
(iv) Time-invariant
(v) Memory less

Answer:

For each of the following systems determine whether the system is
a) Linear b) Causal c) Stable d) Time- invariant e) Memory less
i) $\quad \mathrm{T}[\mathrm{x}[\mathrm{n}]]=\mathrm{ax}[\mathrm{n}]+\mathrm{bx}(\mathrm{n}-1)$
a) Linear: Let $x(n)=x_{1}(n)$ output $y_{1}(n)=a x_{1}(n)+b x_{1}(n-1)$

$$
\text { Let } x(n)=x_{2}(n) \text { output } y_{2}(n)=a x_{2}(n)+b x_{2}(n-1)
$$

$$
\text { Let } x(n)=x_{3}(n)=x_{1}(n)+x_{2}(n)
$$

Output $y_{3}(n)=a x_{3}(n)+b x_{3}(n-1)$

$$
=a\left[x_{1}(n)+x_{2}(n)\right]+b\left[x_{1}(n-1)+x_{2}(n-1)\right]
$$

$$
y_{3}(n)=y_{1}(n)+y_{2}(n)
$$

Therefore system is linear.
b) Causal: Output depends on present and past values of input. Therefore system is causal.
c) Stable: Let $\mid x[n] \leq M_{x}$ output
$|y[n]| \leq|a x[n]+b x(n-1)|=|a| \cdot|x[n]|+|b||x[n-1]|$

As ' a ' and ' b ' are constants of finite value output $|y[n]|$ is bounded and the system is stable.
d) Time - invariant:

Given $T[x[n]]=y[n]=a x[n]+b x_{1}(n-1)$
Let $x[n]=x_{1}[n]$

Output $\mathrm{y}_{1}[\mathrm{n}]=\mathrm{ax} 1[\mathrm{n}]+\mathrm{b} \mathrm{bx}_{1}(\mathrm{n}-1)$

Shift output $\mathrm{y}_{1}[\mathrm{n}]$ by ' k ' units
$y_{1}[n-k]=a x_{1}[n-k]+b x_{1}(n-k-1)$

Let $x[n]=x_{2}[n]=x_{1}[n-k]$
$y_{2}[n]=a x_{2}[n]+b$
$y_{2}[n]=a x_{1}[n-k]+b$
$y_{2}[n]=y_{1}[n-k]$
Therefore system is time - invariant.
e) Memory:

Output depends only on present and past value of input. Therefore system is

memory system.

Q. 3 a. Determine the Fourier's Series representation for signal

$$
x(t)=\cos (2 \pi t)+4 \sin (6 \pi t)
$$

Answer:
Given Signal $x(t)=\cos (2 \pi t)+4 \sin (6 \pi t)$
Period of $\cos (2 \pi t)$ is $T_{1}=1$
Period of $\sin (6 \pi t)$ is $T_{2}=1 / 3$
The Fundamental period $x(t)$ is $T=1$ sec
Expressing $x(t)$ as

$$
\begin{aligned}
x(t) & =\frac{1}{2}\left[e^{j(2 \pi t)}+e^{-j(2 \pi t)}\right]+\frac{4}{2 j}\left[e^{j 6 \pi t}-e-j^{6 \pi t}\right] \\
& =\frac{1}{2} e^{j 2 \pi t}+\frac{1}{2} e^{-j 2 \pi t}+\frac{2}{j} e^{j 2 \pi(3) t}-\frac{2}{j} e^{-j 2 \pi(3) t}
\end{aligned}
$$

Fourier Series representation is

$$
x(t)=\sum_{k=-\infty}^{\infty} X(k) e^{j k \omega_{0} t}
$$

Comparing with above equation

$$
X(k)= \begin{cases}-\frac{2}{j} & k=-3 \\ \frac{1}{2} & k=-1 \\ \frac{1}{2} & k=1 \\ \frac{2}{j} & k=+3 \\ 0 & \text { otherwise }\end{cases}
$$

b. State and prove the following properties of continuous time and periodic signals
(i) Time shifting
(ii) Time Reversal

Answer:
Time shifting
When a time shift is applied to a periodic signal $x(t)$, the period T of the signal is preserved. The Fourier series coefficients b_{k} of the resulting signal $y(t)=x\left(t-t_{0}\right)$ may be expressed as

$$
b_{k}=\frac{1}{T} \int_{T} x\left(t-t_{0}\right) e^{-j k \omega_{0} t} d t
$$

Letting $\tau=t-t_{0}$ in the integral, and noting that the new variable τ will also range over an interval of duration T , we obtain

$$
\begin{aligned}
\frac{1}{T} \int_{T} x(\tau) e^{-j k \omega_{0}\left(\tau+t_{0}\right)} d \tau & =e^{-j k \omega_{0} t_{0}(\tau+)} \frac{1}{T} \int_{T} x(\tau) e^{-j k \omega_{0} \tau} d \tau \\
& =e^{-j k \omega_{0} t_{0}} a_{k}=e^{-j k(2 \pi / T) t_{0}} a_{k}
\end{aligned}
$$

Where a_{k} is the $k^{\text {th }}$ Fourier series coefficient of $x(t)$. that is, if

$$
x(t) \stackrel{F S}{\leftrightarrow} a_{k}
$$

Then

$$
x\left(t-t_{0}\right) \stackrel{F S}{\leftrightarrow} e^{-j k \omega_{0} t_{0}} a_{k}=e^{-j k(2 \pi / T) t_{0}} a_{k}
$$

One consequence of this property is that, when a periodic signal is shifted in time, the magnitudes of its Fourier series coefficients remain unaltered. That is $\left|b_{k}\right|=\left|a_{k}\right|$.

Time Reversal

The period T of a periodic signal $x(t)$ also remains unchanged when the signal undergoes time reversal. To determine the Fourier series coefficients of $y(t)=x(-t)$.

$$
x(-t)=\sum_{k=-\infty}^{\infty} a_{k} e^{-j k 2 \pi t / T}
$$

Let $\mathrm{k}=-\mathrm{m}$

$$
\begin{gathered}
y(t)=x(-t)=\sum_{m=-\infty}^{\infty} a_{-m} e^{-j m 2 \pi t / T} \\
\mathrm{~b}_{\mathrm{k}}=\mathrm{a}_{\mathrm{k}} . \quad x(t) \stackrel{F S}{\leftrightarrow} a_{k},
\end{gathered}
$$

Then
$x(-t) \stackrel{F S}{\leftrightarrow} a_{-k}$.
c. Find the Fourier Series representation of the signal $\mathbf{x}(\mathbf{t})$ shown in
fig. 1(4)

Fig. 1
Answer:

Q. 4 a. State and prove the following properties of continuous signal Fourier Transform:
(i) Time shifting property
(ii) Frequency differentiation property

Answer:
If

$$
x(t) \stackrel{F T}{\longleftrightarrow} X(j \omega)
$$

then

$$
x\left(t-t_{0}\right) \stackrel{F T}{\longleftrightarrow} X(j \omega) e^{-j \omega_{0}}
$$

Shift in time domain will result in multiplying by an exponential in frequency domain

Proof. $F\left\{x\left(t-t_{0}\right)\right\}=\int_{-\infty}^{\infty} x\left(t-t_{0}\right) e^{-j \omega t} d t$

Let $t-t_{0}=\tau$

$$
\begin{aligned}
& t=\tau+t_{0} \text { and } d t=d \tau \\
&=\int_{-\infty}^{\infty} x(\tau) e^{-j \omega\left(\tau+t_{0}\right)} d \tau \\
&=\int_{-\infty}^{\infty} x(\tau) e^{-j \omega \tau} d \tau e^{-j \omega t_{0}} \\
&=X(j \omega) e^{-j \omega t_{0}}
\end{aligned}
$$

ii). Frequency differentiation Property:

Statement:

If

$$
x(t) \stackrel{F T}{\longleftrightarrow} X(j \omega)
$$

Then

$$
-j t x(t) \stackrel{F T}{\longleftrightarrow} \frac{d}{d w} X(j w)
$$

Differentiating signal in frequency domain is same as multiplying by t in time domain
Proof.

$$
X(j w)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t
$$

Differentiating with respect to w

$$
\begin{aligned}
& \frac{d X(j w)}{d w}=\int_{-\infty}^{\infty} x(t) e^{-j(w) t}(-j t) d t \\
& \frac{d X(j w)}{d w}=\int_{-\infty}^{\infty}(-j t) x(t) e^{-j(w) t} d t
\end{aligned}
$$

Therefore

$$
-j t x(t) \stackrel{F T}{\longleftrightarrow} \frac{d}{d w} X(j w)
$$

b. Find the FT of the signal $x(t)$ as shown in fig. 2

Fig. 2
Answer:

Let $x_{1}(t)=A \operatorname{rect}(\mathrm{t}) \leftrightarrow A \sin (f)=X_{1}(\mathrm{jw})$ Here $\mathrm{A}=\mathrm{A}$ and $\mathrm{T}=1$
Given signal $\mathrm{x}(\mathrm{t})$ can be expressed as
$x(t)=x_{1}(t-1.5)+x_{1}(t+1.5)$
Therefore the Fourier transform is
$\mathrm{FT}\{\mathrm{x}(\mathrm{t})\}=\mathrm{X}_{1}(\mathrm{jw})\left[\mathrm{e}^{-\mathrm{j}(1.5 \mathrm{t})}+\mathrm{e}^{\mathrm{j}(1.5) \mathrm{t}}\right]$
$X(j w)=A \operatorname{sinc}(f)\left[e^{-j(1.5 t)}+e^{j(1.5) t}\right]$
$X(j w)=2 A \sin (f) \cos (1.5 t)$
Note: Alternative answers are also possible.
Q. 5 a. Find a Fourier transformer $x[n]=a^{|n|},|\mathrm{a}|<1$

Answer:
$X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{+\infty} a^{|n|} e^{-j \omega n}$
$=\sum_{n=0}^{\infty} a^{n} e^{-j \omega n}+\sum_{n=-\infty}^{-1} a^{-n} e^{j \omega n}$

$$
\begin{aligned}
& X\left(e^{j \omega}\right)=\frac{1}{1-a e^{-j \omega}}+\frac{a e^{j \omega}}{1-a e^{-j \omega}} \\
& =\frac{1-a^{2}}{1-2 a \cos \omega+a^{2}}
\end{aligned}
$$

b. A casual LTI is described by the difference equation

$$
y[n]=y[n-1]+y[n-2]+x[n-1]
$$

(i) Find the system function $H(z)=Y(z) / X(z)$ for this system. Plot the poles and zeros of $H(z)$ and indicate region of convergence.
(ii) Find the unit sample response of system.

Answer:

$h[n]=a^{n} u[n]$
$x[n]=\beta^{n} u[n]$

$$
H\left(e^{j \omega}\right)=\frac{1}{1-\alpha e^{-j \omega}}
$$

and

$$
Y\left(e^{j \omega}\right)=H\left(e^{j \omega}\right) X\left(e^{j \omega}\right)=\frac{1}{\left(1-\alpha e^{-j \omega}\right)\left(1-\beta e^{-j \omega}\right)}
$$

$$
A=\frac{\alpha}{\alpha-\beta}, \quad B=-\frac{B}{\alpha-\beta}
$$

$$
y[n]=\frac{1}{\alpha-\beta}\left[\alpha^{n+1} u[n]-\beta^{n+1} u[n]\right]
$$

c. For the system equation $y(n)-4 y(n-1),=x(n)$ find
(i) The transfer function and
(ii) Impulse response

Answer:

For the system equation $y(n)-4 y(n-1),=x(n)$ find the transfer function and impulse response.

Solution:

Given y
Taking Fourier transform
$Y\left(e^{j \Omega}\right)\left[1-4 e^{-j \Omega}\right]=X\left(e^{j \Omega}\right)$
$H\left(e^{j \Omega}\right)=\frac{1}{\left[1-4 e^{-j \Omega}\right]}$
$h(n)=(4)^{n} u(n)$
Q. 6 a. Find the frequency response of an LTI system having impulse response $h(t)=(1+t) e^{-2 t} u(t)$

Answer:

Given $h(t)=(1-t) e^{-2 t} u(t)$
$h(t)=e^{-2 t} u(t)-t e^{-2 t} u(t)$
$H(j w)=\int_{-\infty}^{\infty} h(t) e^{-j w t} d t$
$e^{-a t} u(t) \leftrightarrow \frac{1}{a+j w}$
$t e^{-a t} u(t) \leftrightarrow \frac{1}{(a+j w)^{2}}$
$F\left\{e^{-2 t} u(t)-t e^{-2 t} u(t)\right\}=\frac{1}{2+j w}-\frac{1}{(2+j w)^{2}}$
$H(j w)=\frac{1+j w}{(2+j w)^{2}}$
b. State and prove sampling theorem for Low pass signal.

Answer:
Sampling theorem.
Statement: Let $m(t)$ is a message signal band limited to $f_{m} H z$, if this signal is sampled at a rate $f_{s} \geq 2 f_{m}$ then we can reconstruct the message signals from the sampled value with minimum distortion.
i.e $f_{s} \geq 2 f_{m}$
where fs is sampling frequency
and fm is maximum message frequency
Let $\mathrm{m}(\mathrm{t})=$ message signal
$m(t) \leftrightarrow M(f)$
$\delta_{T}(t)=\sum_{n} \delta(t-n T) \quad$ is periodic delta function with Fourier series

$$
\delta_{T}(f)=\frac{1}{T} \delta\left(f-n f_{s}\right)
$$

Sampled signal $S(t)=m(t) \partial_{T}(t)$
Multiplication in time domain is same as convolution in frequency domain

$$
\begin{aligned}
\therefore S(f) & =M(f) * \delta_{T}(f) \\
& =M(f) *\left[\frac{1}{T} \sum \delta_{T}\left(f-n f_{s}\right)\right]
\end{aligned}
$$

Convolving any function with delta function yield the same function

$$
\therefore S(f)=\frac{1}{T} \sum_{n} M\left(f-n f_{s}\right)
$$

Spectrum of sampled signal is periodic with period fs.

c. Determine the Nyquist rate for the following signals
(i) $x(t)=\cos (600 \pi t)+\sin (800 \pi t)$
(ii) $x(t)=\cos (600 \pi t) \cos (800 \pi t)$

Answer:

Determine the Nyquist rate for the following signals
i) $x(t)=\cos (600 \pi t)+\sin (800 \pi t)$
$\mathrm{f}_{1}=300 \mathrm{~Hz}$ and
$\mathrm{f}_{2}=400 \mathrm{~Hz}$
$\mathrm{f}_{\mathrm{Nyq}}=2 \mathrm{fm}_{(\text {max })}=2 \times 400=800 \mathrm{~Hz}$
ii) $x(t)=\cos (600 \pi t) \cos (800 \pi t)$

$$
=0.5[\cos (1400 \pi t)+\cos (200 \pi t t)]
$$

$\mathrm{f}_{1}=700 \mathrm{~Hz}$ and
$\mathrm{f}_{2}=100 \mathrm{~Hz}$
$f_{\text {Nya }}=2 \mathrm{fm}_{(\max)}=2 x 700=1400 \mathrm{~Hz}$
Q. 7 a. Find the Laplace transform of the following signals.
(i) $X(t)=t e^{-2 t} u(t)$
(ii) $X(t)=e^{-3 t} \cos (5 t) u(t)$

Answer:
i) $\mathrm{X}(\mathrm{t})=\mathrm{te} e^{-2 \mathrm{t}} \mathrm{u}(\mathrm{t})$
$L\left[e^{-2 t} u(t)\right]=\frac{1}{s+2}$
$u \sin g$ differentiation property
$L\left[(-t)^{n} x(t)\right]=\frac{d^{n} X(S)}{d S^{n}}$
for $n=1$
$L[(t) x(t)]=-\frac{d X(S)}{d S}$
$L\left[(t) e^{-2 t} u(t)\right]=-\frac{d\left[\frac{1}{s+2}\right]}{d S}$
$=\frac{1}{(s+2)^{2}}$
ii.) $X(t)=e^{-3 t} \cos (5 t) u(t)$
$L[\cos (5 t) u(t)]=\frac{s}{s^{2}+5^{2}}$
$u \sin g$ frequency shifting property
$L\left[e^{-3 t} \cos (5 t) u(t)\right]=\frac{(s+3)}{(s+3)^{2}+25}$
b. Find the Inverse Laplace transform of the following $\mathbf{X (s)}$

$$
X(s)=\frac{s+5}{\left(s^{2}+6 s+10\right)}
$$

Answer:

i)

$$
X(S)=\frac{s+5}{\left(S^{2}+6 S+10\right)}
$$

$$
X(s)=\frac{(s+3)+2}{(s+3)^{2}+1^{2}}=\frac{(s+3)}{(s+3)^{2}+1^{2}}+\frac{2(1)}{(s+3)^{2}+1^{2}}
$$

$u \sin g$ relation

$$
e^{-b t} \cos a t u(t) \leftrightarrow \frac{s+b}{(s+b)^{2}+a^{2}} \quad \text { and }
$$

$$
e^{-b t} \sin a t u(t) \leftrightarrow \frac{a}{(s+b)^{2}+a^{2}}
$$

$$
x(t)=e^{-3 t} \cos t u(t)+2 e^{-3 t} \sin t u(t)
$$

c. State initial and final value theorem in Laplace transform.

Answer:

Initial Value theorem:

The initial value of $x(t)$ i.e. $x(0)$ directly from the transform $X(S)$ without finding the inverse $x\left(0^{+}\right)=\underset{s \rightarrow \infty}{l t} s X(s)$

Final value theorem:

The value of $\mathrm{x}(\mathrm{t})$ as $t \rightarrow \infty$ may be found directly from the LTX(s)

$$
\operatorname{lt}_{t \rightarrow \infty} x(t)=\operatorname{lt}_{s \rightarrow 0} s X(s)
$$

Q. 8 a. Find the Z-transform of the following sequences and find their

ROC

(i) $x[n]=\left[\frac{1}{2}\right]^{n-2}\left(\sin \Omega_{0}(n-2)\right) u[n-2]$
(ii) $\quad x[n]=(5)^{n} u[-n-1]-(3)^{n} u[n]$

Answer:

$$
\begin{aligned}
& x[n]=\left[\frac{1}{2}\right]^{n} \sin \Omega_{0} n u[n] \\
& \sin \Omega_{0} n u[n] \leftrightarrow \frac{z^{-1} \sin \Omega_{0}}{1-2 z^{-1} \cos \Omega_{0}+z^{-2}} \quad \text { ROC }|z|>1
\end{aligned}
$$

Using scaling roperty
$\left[\frac{1}{2}\right]^{n} \sin \Omega_{0} n u[n] \leftrightarrow \frac{\{1 / 2) z^{-1} \sin \Omega_{0}}{1-z^{-1} \cos \Omega_{0}+\frac{1}{4} z^{-2}} \quad$ ROC $|z|>\frac{1}{2}$
$x[n]=\left[\frac{1}{2}\right]^{n-2} \sin \Omega_{0}(n-2) u[n-2] \leftrightarrow\left[\frac{\{1 / 2) z^{-1} \sin \Omega_{0}}{1-z^{-1} \cos \Omega_{0}+\frac{1}{4} z^{-2}}\right] Z^{-2} \quad$ ROC $|z|>\frac{1}{2}$
ii. $x[n]=(5)^{n} u[-n-1]-(3\}^{n} u[n]$
$X(z)=\sum_{n=-\infty}^{-1}(5)^{n} z^{-n}-\sum_{n=0}^{\infty} 3^{n} z^{-n}$
$(5)^{n} u[-n-1] \leftrightarrow-\left[\frac{z}{z-5}\right]$ ROC $:|\mathrm{Z}|<5$
$(3\}^{n} u[n] \leftrightarrow\left[\frac{z}{z-3}\right]$ Roc $:|Z|>3$
$X(z)=-\left[\frac{z}{z-5}\right]-\left[\frac{z}{z-3}\right]$
ROC: $|z|>3$ and $|z|<5$,
\therefore Common ROC: $3<|z|<5$
b. State and prove the convolution property of Z- transform

Answer:

Convolution property:

Statement: convolving two signals in time domain is same as multiplying their Ztransforms in Z domain.

$$
\begin{array}{rl}
\text { If } x[n] & \leftrightarrow X(z) \\
h[n] & \leftrightarrow H(z) \\
x[n]^{*} & h[n] \leftrightarrow X[z] H[z]
\end{array}
$$

Then

$$
\text { Proof: } \quad z\{x[n] * h[n]\}=\sum_{n=-\infty}^{\infty}[x[n] * h[n]] z^{-n}
$$

$$
=\sum_{\eta=-\infty}^{\infty}\left[\sum_{k=-\infty}^{\infty} x[k] h[n-k]\right] z^{-n}
$$

Let $n-k=1, n=k+1$

$$
\begin{aligned}
& =\sum_{l=-\infty}^{\infty}\left[\sum_{k=-\infty}^{\infty} x[k] h[l]\right] z^{-(k+l)} \\
& =\sum_{l=-\infty}^{\infty} h[l] z^{-l}\left[\sum_{k=-\infty}^{\infty} x[k]\right] z^{-k} \\
& =X[Z] H[Z]
\end{aligned}
$$

c. Find the Inverse Z-transform of

$$
X(z)=\frac{z}{z^{2}-5 z+6}
$$

$$
\text { ROC } \quad \text { (i) }|z|>3
$$

(ii) $|z|<2$
(iii) $2<|z|<3$

Answer:

i) $X(z)=\frac{z}{z^{2}-5 z+6} \quad \operatorname{ROC}$ (i) $|z|>3$ (ii) $|z|<2 \quad$ (iii) $2<|z|<3$

Solution:

$$
\begin{aligned}
& X(z)=\frac{z}{z^{2}-5 z+6}=\frac{z}{(z-3)(z-2)} \\
& \frac{X(z)}{z}=\frac{1}{(z-3)(z-2)}=\frac{A}{(z-3)}+\frac{B}{(z-2)}
\end{aligned}
$$

Solving for A \& $B . A=1 \quad B=-1$

$$
\begin{aligned}
& \frac{X(z)}{z}=\frac{1}{z-3}-\frac{1}{z-2} \\
& X(Z)=\frac{z}{z-(3)}-\frac{z}{z-(2)}
\end{aligned}
$$

Taking IzT
(i) $\operatorname{ROC}|z|>3$

$$
x[n]=(3)^{n} u[n]-(2)^{n} u[n]
$$

(ii) $\operatorname{ROC}|z|<2$

$$
x[n]=-(3)^{n} u[-n-1]+(2)^{n} u[-n-1]
$$

$\operatorname{ROC} 2<|z|<3 \quad x[n]=-(3)^{n} u[-n-1]-(2)^{n} u[n]$
Q. 9 a. The random variable x is expresses as its density function

$$
f_{x}(x)= \begin{cases}\alpha e^{-\alpha x} & \mathrm{x}>0 ; \alpha=\text { constant } \\ 0 & \text { otherwise }\end{cases}
$$

$$
\text { Then, find expected values } E[x] \text { and } E\left[x^{2}\right] \text {. }
$$

Answer:

$$
E[x]=\mu_{x}=\int_{-\infty}^{\infty} x f_{x}(x) d x
$$

$$
\left.\begin{array}{rl}
= & \int_{-\infty}^{\infty} \alpha x e^{-\alpha x} \mathrm{dx} \\
& =\alpha\left[\left.x\left(\frac{\mathrm{e}^{-\alpha x}}{-\alpha}\right) \right\rvert\, 0\right. \\
0
\end{array} \int_{0}^{\infty} \frac{\mathrm{e}^{-\alpha x}}{\alpha} \mathrm{dx}\right] .
$$

$$
=-\left.\frac{1}{\alpha} \mathrm{e}^{-\alpha x}\right|_{0} ^{\infty}=\frac{1}{\alpha}
$$

And

$$
\left.\begin{array}{rl}
\mathrm{E}\left[\mathrm{X}^{2}\right]=\mu_{\mathrm{x}} & =\int_{-\infty}^{\infty} \mathrm{xf} \\
\mathrm{x}
\end{array}(\mathrm{x}) \mathrm{dx}\right] \text {. } \begin{aligned}
& \\
&=\alpha \int_{0}^{\infty} \mathrm{x}^{2} \alpha \mathrm{e}^{-\alpha x} \mathrm{dx} \\
&=\alpha\left[\left.\mathrm{x}\left(\frac{\mathrm{x}^{2} \mathrm{e}^{-\alpha x}}{-\alpha}\right) \right\rvert\, 0-\int_{0}^{\infty} 2 \mathrm{xe}^{-\alpha x} \mathrm{dx}\right]
\end{aligned}
$$

$$
\mathrm{E}\left[\mathrm{X}^{2}\right]=\frac{2}{\alpha}
$$

b. What are the properties of wide sense stationary process?

Answer:

i) A random process $X(t)$ is called wide sense stationary if it satisfies
a. Mean of the process is constant
b. autocorrelation function is independent of time
c. variance of the process is constant
c. Write properties of power spectral density.

Answer:

Article 1.7 Text book - II, Page 46-47.

TEXT BOOKS

1. Signals and Systems, A.V. Oppenheim and A.S. Willsky with S. H. Nawab, Second Edition, PHI Private limited, 2006
2. Communication Systems, Simon Haykin, $4^{\text {th }}$ Edition, Wiley Student Edition, $7^{\text {th }}$ Reprint 2007
