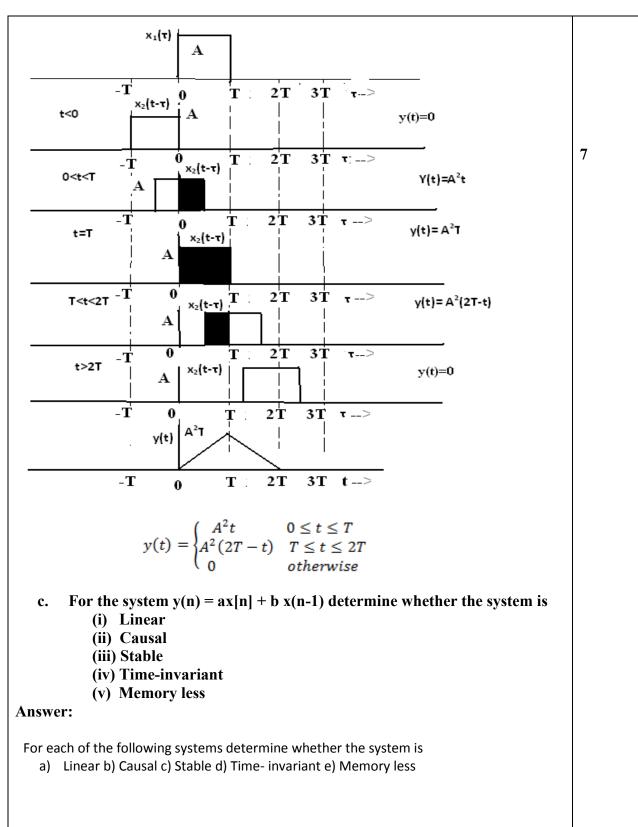
Solution	Manka
Q.2 a. Determine power and energy of the following signals (4)	Marks
(i) $x(t) = Ae^{j\omega_0 t} -\infty < t < \infty$	
(ii) $x(t) = \sin(\omega t)$	
Answer:	
i) $x(t) = Ae^{jw_0 t} - \infty < t < \infty$	2
$I = \int_{-T}^{T} x(t) ^2 dt$	
$\left x(t)\right = \left e^{jw_0t}\right = 1$	
$= \int_{-T}^{T} x(t) ^2 dt = A^2 \int_{-T}^{T} 1 dt = 2T$	
$E = \lim_{T \to \infty} [I] = \infty$	
$P = \lim_{T \to \infty} \left[\frac{I}{2T} \right] = A^2$	
Power is finite , it is a power signal	
ii) x(t) =sinwt	
$I = \int_{T} \left x(t) \right ^2 dt$	2
$=\int_{T}\sin^2 wt dt$	
$= \int_{T}^{T} \frac{(1 - \cos 2wt)}{2} dt = \int_{T}^{T} \frac{1}{2} dt - \frac{1}{2} \int_{T}^{T} \cos 2wt dt$ $= T/2$	
$E = \lim_{T \to \infty} [I] = \infty$	
$P = \lim_{T \to \infty} \left[\frac{I}{T} \right] = \frac{1}{2}$	
Power is finite , it is a power signal	
b. Find the convolution of $X_1(t) = A$; $0 \le t \le T$ and $X_2(t) = A$; $0 \le t \le T$	
Answer	

Answer:



i) T[x[n]] = ax[n] + b x(n-1)

a) Linear: Let $x(n) = x_1(n)$ output $y_1(n) = ax_1(n)+bx_1(n-1)$

Let $x(n) = x_2(n)$ output $y_2(n) = ax_2(n)+bx_2(n-1)$

Let $x(n) = x_3(n) = x_1(n) + x_2(n)$

Output $y_3(n) = ax_3(n)+bx_3(n-1)$

 $=a[x_1(n) + x_2(n)]+b[x_1(n-1)+x_2(n-1)]$

$$y_3(n) = y_1(n) + y_2(n)$$

Therefore system is linear.

- b) Causal: Output depends on present and past values of input. Therefore system is **causal.**
- c) Stable: Let $|x[n]| \le M_x$ output $|y[n]| \le |ax[n] + bx(n-1)| = |a| |x[n]| + |b||x[n-1]|$

As 'a' and 'b' are constants of finite value output |y[n]| is bounded and the system is **stable**.

d) Time – invariant:

Given $T[x[n]] = y[n] = ax[n] + b x_1(n-1)$

Let $x[n] = x_1[n]$

Output $y_1[n] = ax1[n] + b bx_1(n-1)$

Shift output y₁[n] by 'k' units

```
y_1[n-k] = ax_1[n-k] + bx_1(n-k-1)
```

```
Let x[n] = x_2[n] = x_1[n - k]
```

```
y_2[n] = ax_2[n] + b
```

 $y_2[n] = ax_1[n-k] + b$

 $y_2[n] = y_1[n-k]$

Therefore system is time – invariant.

e) Memory:

Output depends only on present and past value of input. Therefore system is

memory system.

Q.3 a. Determine the Fourier's Series representation for signal $x(t) = \cos(2\pi t) + 4\sin(6\pi t)$

Answer:

Given Signal $x(t) = \cos(2\pi t) + 4\sin(6\pi t)$

Period of $cos(2\pi t)$ is $T_1 = 1$

Period of sin($6\pi t$) is T₂ = 1/3

The Fundamental period x(t) is T = 1sec

Expressing x(t) as

 $x(t) = \frac{1}{2} \left[e^{j(2\pi t)} + e^{-j(2\pi t)} \right] + \frac{4}{2j} \left[e^{j6\pi t} - e - j^{6\pi} \right]$ $= \frac{1}{2} e^{j2\pi t} + \frac{1}{2} e^{-j2\pi t} + \frac{2}{j} e^{j2\pi (3)t} - \frac{2}{j} e^{-j2\pi (3)t}$

Fourier Series representation is

$$x(t) = \sum_{k=-\infty}^{\infty} X(k) e^{jk\omega_0 t}$$

Comparing with above equation

$$X(k) = \begin{cases} -\frac{2}{j} & k = -3 \\ \frac{1}{2} & k = -1 \\ \frac{1}{2} & k = 1 \\ \frac{2}{j} & k = +3 \\ 0 & otherwise \end{cases}$$

b. State and prove the following properties of continuous time and periodic signals
(i) Time shifting
(ii) Time Reversal

Answer: Time shifting

When a time shift is applied to a periodic signal x(t), the period T of the signal is preserved. The Fourier series coefficients b_k of the resulting signal $y(t)=x(t-t_0)$ may be expressed as

$$b_k = \frac{1}{T} \int_T x(t - t_0) e^{-jk\omega_0 t} dt$$

Letting $\tau = t - t_0$ in the integral, and noting that the new variable τ will also range over an interval of duration T, we obtain

$$\frac{1}{T} \int_{T} x(\tau) e^{-jk\omega_{0}(\tau+t_{0})} d\tau = e^{-jk\omega_{0}t_{0}(\tau+t)} \frac{1}{T} \int_{T} x(\tau) e^{-jk\omega_{0}\tau} d\tau$$
$$= e^{-jk\omega_{0}t_{0}} a_{k} = e^{-jk(2\pi/T)t_{0}} a_{k}$$

Where a_k is the k^{th} Fourier series coefficient of x(t). that is , if

$$x(t) \stackrel{FS}{\leftrightarrow} a_k,$$

Then

$$x(t-t_0) \stackrel{FS}{\longleftrightarrow} e^{-jk\omega_0 t_0} a_k = e^{-jk(2\pi/T)t_0} a_k.$$

One consequence of this property is that, when a periodic signal is shifted in time, the magnitudes of its Fourier series coefficients remain unaltered. That is $|b_k| = |a_k|$.

Time Reversal

The period T of a periodic signal x(t) also remains unchanged when the signal undergoes time reversal. To determine the Fourier series coefficients of y(t)=x(-t).

$$x(-t) = \sum_{k=-\infty}^{\infty} a_k e^{-jk2\pi t/T}$$

Let k=-m

$$y(t) = x(-t) = \sum_{m=-\infty}^{\infty} a_{-m} e^{-jm2\pi t/T}$$

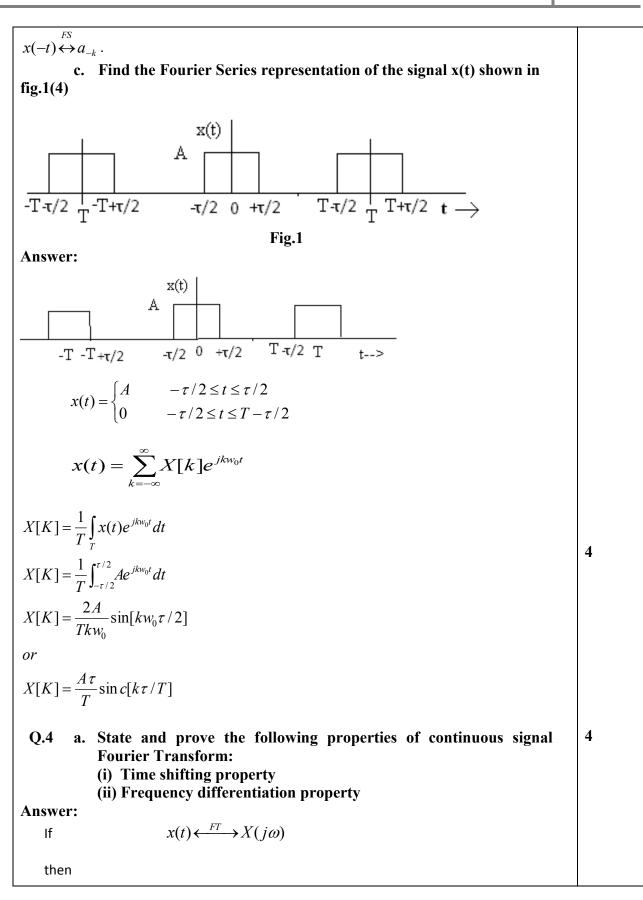
$$\mathbf{b}_{\mathbf{k}} = \mathbf{a}_{-\mathbf{k}}, \quad x(t) \stackrel{FS}{\longleftrightarrow} a_k,$$

3

Then

3

1



$$x(t-t_{0}) \xleftarrow{FT} X(j\omega)e^{-j\omega t_{0}}$$
Shift in time domain will result in multiplying by an exponential in frequency domain
$$Proof. \ F\{x(t-t_{0})\} = \int_{-\infty}^{\infty} x(t-t_{0})e^{-j\omega t} dt$$
Let $t-t_{0} = \tau$

$$t = \tau + t_{0} \text{ and } dt = d\tau$$

$$= \int_{-\infty}^{\infty} x(\tau)e^{-j\omega(\tau+t_{0})}d\tau$$

$$= \int_{-\infty}^{\infty} x(\tau)e^{-j\omega t}d\tau \ e^{-j\omega t_{0}}$$

$$ii). \ Frequency \ differentiation \ Property:$$
Statement:
If
$$x(t) \xleftarrow{FT} X(j\omega)$$
Then
$$-jtx(t) \xleftarrow{FT} \frac{d}{dw} X(jw)$$

$$I$$

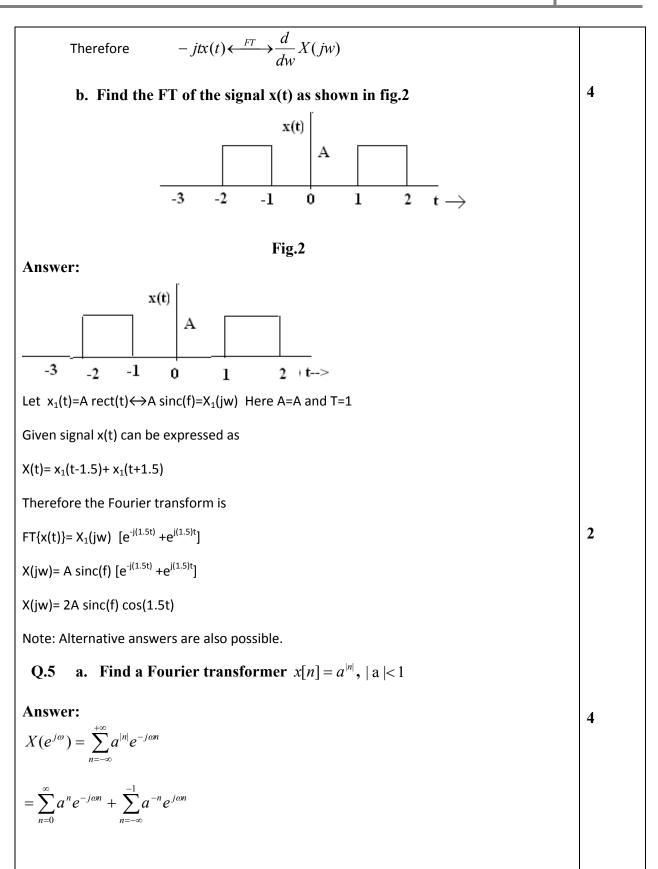
Differentiating signal in frequency domain is same as multiplying by t in time domain

Proof.

$$X(jw) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

Differentiating with respect to w

$$\frac{dX(jw)}{dw} = \int_{-\infty}^{\infty} x(t)e^{-j(w)t}(-jt) dt$$
$$\frac{dX(jw)}{dw} = \int_{-\infty}^{\infty} (-jt)x(t)e^{-j(w)t} dt$$



$$\begin{split} X(e^{j^{(n)}}) &= \frac{1}{1 - ae^{-j^{(n)}}} + \frac{ae^{j^{(n)}}}{1 - ae^{-j^{(n)}}} \\ &= \frac{1 - a^2}{1 - 2a\cos \omega + a^2} \\ & \textbf{b. A casual LTI is described by the difference equation} \\ & y[n] = y[n-1] + y[n-2] + x[n-1] \\ & \textbf{(i) Find the system function } H(z) = Y(z)/X(z) \text{ for this system. Plot} \\ & \text{ the poles and zeros of } H(z) \text{ and indicate region of convergence.} \\ & \textbf{(ii) Find the unit sample response of system.} \\ & \textbf{Answer:} \\ h[n] = a^n u[n] \\ & x[n] = \beta^n u[n] \\ & H(e^{j^{(n)}}) = \frac{1}{1 - \alpha e^{-j^{(n)}}} \\ & \text{and} \\ & X(e^{j^{(n)}}) = \frac{1}{1 - \beta e^{-j^{(n)}}} \\ & Y(e^{j^{(n)}}) = H(e^{j^{(n)}})X(e^{j^{(n)}}) = \frac{1}{(1 - \alpha e^{-j^{(n)}})(1 - \beta e^{-j^{(n)}})} \\ & A = \frac{\alpha}{\alpha - \beta}, \quad B = -\frac{B}{\alpha - \beta} \\ & y[n] = \frac{1}{\alpha - \beta} [\alpha^{n+1}u[n] - \beta^{n+1}u[n]] \\ \textbf{c. For the system equation y(n) - 4 y(n-1), = x(n) find \\ & \textbf{(i) Impulse response} \\ & \textbf{Answer:} \\ \text{For the system equation y(n) - 4 y(n-1), = x(n) find the transfer function and impulse response.} \\ & \text{Solution:} \\ \end{split}$$

and

4

3

3

Given y

Taking Fourier transform

$$Y(e^{j\Omega})[1-4e^{-j\Omega}] = X(e^{j\Omega})$$
$$H(e^{j\Omega}) = \frac{1}{[1-4e^{-j\Omega}]}$$
$$h(n) = (4)^{n}u(n)$$

Q.6 a. Find the frequency response of an LTI system having impulse response $h(t) = (1+t)e^{-2t}u(t)$

Answer:
Given
$$h(t)=(1-t)e^{-2t}u(t)$$

$$h(t) = e^{-2t}u(t) - te^{-2t}u(t)$$

$$H(jw) = \int_{-\infty}^{\infty} h(t) e^{-jwt} dt$$

$$e^{-at}u(t) \leftrightarrow \frac{1}{a+jw}$$

 $te^{-at}u(t) \leftrightarrow \frac{1}{(a+jw)^2}$

 e^{-}

$$F\{e^{-2t}u(t) - te^{-2t}u(t)\} = \frac{1}{2 + jw} - \frac{1}{(2 + jw)^2}$$
$$H(jw) = \frac{1 + jw}{(2 + jw)^2}$$

b. State and prove sampling theorem for Low pass signal.

Answer:

Sampling theorem.

Statement: Let m(t) is a message signal band limited to f_mHz, if this signal is sampled at a rate $f_s \geq 2 f_m$ then we can reconstruct the message signals from the sampled value with minimum distortion.

i.e
$$f_s \ge 2f_m$$

where fs is sampling frequency

and fm is maximum message frequency

Let m(t)=message signal

$$m(t) \leftrightarrow M(f)$$

 $\delta_T(t) = \sum_n \delta(t - nT)$ is periodic delta function with Fourier series
 $\delta_T(f) = \frac{1}{T} \delta(f - nf_s)$

Sampled signal $S(t)=m(t)\partial_T(t)$

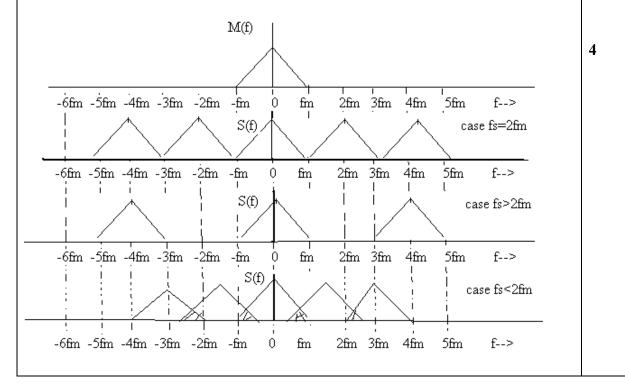
Multiplication in time domain is same as convolution in frequency domain

$$\therefore S(f) = M(f) * \delta_T(f)$$
$$= M(f) * \left[\frac{1}{T} \sum \delta_T(f - nf_s)\right]$$

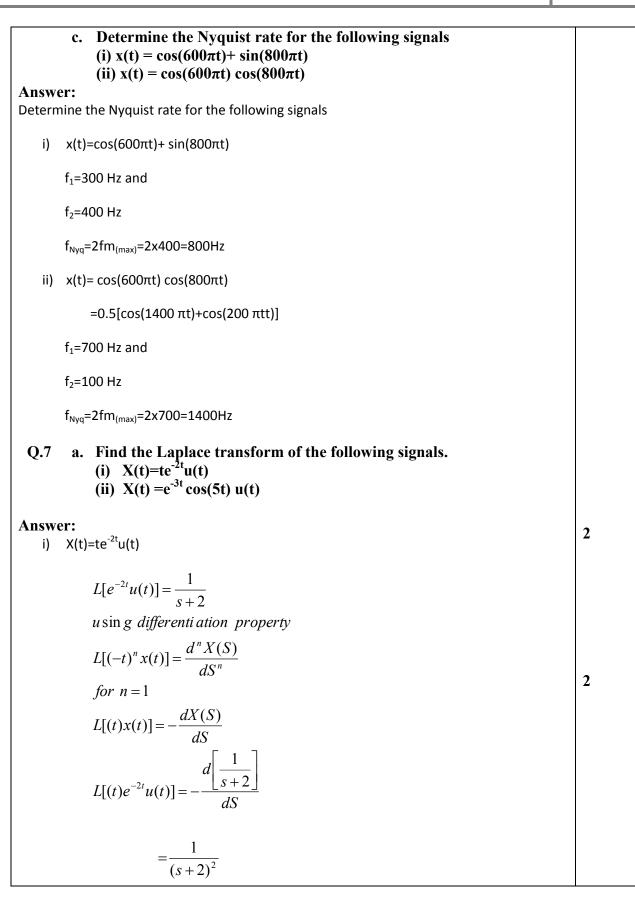
Convolving any function with delta function yield the same function

$$\therefore S(f) = \frac{1}{T} \sum_{n} M(f - nf_s)$$

Spectrum of sampled signal is periodic with period fs.



AE57/AC57/AT57/AE112



© IETE

ii.) $X(t) = e^{-3t} \cos(5t) u(t)$ $L[\cos(5t)u(t)] = \frac{s}{s^2 + 5^2}$ using frequency shifting property $L[e^{-3t}\cos(5t)u(t)] = \frac{(s+3)}{(s+3)^2 + 25}$ 4 b. Find the Inverse Laplace transform of the following X(s) $X(s) = \frac{s+5}{(s^2+6s+10)}$ Answer: $X(S) = \frac{s+5}{(S^2+6S+10)}$ i) $X(s) = \frac{(s+3)+2}{(s+3)^2+1^2} = \frac{(s+3)}{(s+3)^2+1^2} + \frac{2(1)}{(s+3)^2+1^2}$ using relation $e^{-bt}\cos at u(t) \leftrightarrow \frac{s+b}{(s+b)^2+a^2}$ and 4 $e^{-bt}\sin at u(t) \leftrightarrow \frac{a}{(s+b)^2 + a^2}$ $x(t) = e^{-3t} \cos t u(t) + 2e^{-3t} \sin t u(t)$ c. State initial and final value theorem in Laplace transform. Answer: Initial Value theorem: The initial value of x(t) i.e. x(0) directly from the transform X(S) without finding the inverse $x(0^+) = \lim_{s \to \infty} sX(s)$ Final value theorem: The value of x(t) as $t \rightarrow \infty$ may be found directly from the LT X(s) $\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$ 4 Q.8 a. Find the Z-transform of the following sequences and find their

ROC (i) $x[n] = \left[\frac{1}{2}\right]^{n-2} (\sin \Omega_0 (n-2)) u[n-2]$ (ii) $x[n] = (5)^n u[-n-1] - (3)^n u[n]$ Answer: $x[n] = \left| \frac{1}{2} \right|^n \sin \Omega_0 n u[n]$ 2 $\sin \Omega_0 nu[n] \leftrightarrow \frac{z^{-1} \sin \Omega_0}{1 - 2z^{-1} \cos \Omega_0 + z^{-2}} \operatorname{ROC} |z| > 1$ Using scaling roperty $\left[\frac{1}{2}\right]^n \sin\Omega_0 nu[n] \leftrightarrow \frac{\{1/2\}z^{-1}\sin\Omega_0}{1-z^{-1}\cos\Omega_0 + \frac{1}{4}z^{-2}} \quad \text{ROC} \ \left|z\right| > \frac{1}{2}$ 2 $x[n] = \left[\frac{1}{2}\right]^{n-2} \sin \Omega_0(n-2)u[n-2] \leftrightarrow \left[\frac{(1/2)z^{-1}\sin \Omega_0}{1-z^{-1}\cos \Omega_0 + \frac{1}{2}z^{-2}}\right] Z^{-2} \quad \text{ROC} \ |z| > \frac{1}{2}$ ii. $x[n] = (5)^n u[-n-1] - (3)^n u[n]$ $X(z) = \sum_{n=-\infty}^{-1} (5)^n z^{-n} - \sum_{n=-\infty}^{\infty} 3^n z^{-n}$ 3 $(5)^n u[-n-1] \leftrightarrow -\left[\frac{z}{z-5}\right] \text{ ROC}: |Z| < 5$ $(3)^n u[n] \leftrightarrow \left[\frac{z}{z-3}\right] Roc: |Z| > 3$ $X(z) = -\left[\frac{z}{z-5}\right] - \left[\frac{z}{z-3}\right]$ ROC: |z| > 3 and |z| < 5, • Common ROC: 3 < |z| < 5

b. State and prove the convolution property of Z- transform

Answer:

Convolution property:

Statement: convolving two signals in time domain is same as multiplying their Ztransforms in Z domain.

3

If
$$x[n] \leftrightarrow X(z)$$

$$h[n] \leftrightarrow H(z)$$

Then

Then
$$x[n]^*h[n] \leftrightarrow X[z]H[z]$$

Proof: $z\{x[n]^*h[n]\} = \sum_{\eta=-\infty}^{\infty} [x[n]^*h[n]]z^{-n}$

$$=\sum_{\eta=-\infty}^{\infty}\left[\sum_{k=-\infty}^{\infty}x[k]h[n-k]\right]z^{-n}$$

Let n-k= l, n=k+l

$$=\sum_{l=-\infty}^{\infty} \left[\sum_{k=-\infty}^{\infty} x[k]h[l]\right] z^{-(k+l)}$$
$$=\sum_{l=-\infty}^{\infty} h[l] z^{-l} \left[\sum_{k=-\infty}^{\infty} x[k]\right] z^{-k}$$

$$=X[Z]H[Z]$$

1

 $X(z) = \frac{z}{z^2 - 5z + 6}$

c. Find the Inverse Z-transform of

ROC (i)
$$|z| > 3$$

(ii) $|z| < 2$

(ii)
$$|z| < 2$$

(iii)
$$2 < |z| < 3$$

Answer:

i)
$$X(z) = \frac{z}{z^2 - 5z + 6}$$
 ROC (i) $|z| > 3$ (ii) $|z| < 2$ (*iii*) $2 < |z| < 3$

SIGNALS AND SYSTEMS JUN 2015

1

Solution:

Solution:

$$X(z) = \frac{z}{z^{2}-5z+6} = \frac{z}{(z-3)(z-2)}$$

$$\frac{X(z)}{z} = \frac{1}{(z-3)(z-2)} = \frac{A}{(z-3)} + \frac{B}{(z-2)}$$
Solving for A & B. A = 1 B = -1

$$\frac{X(z)}{z} = \frac{1}{z-3} - \frac{1}{z-2}$$

$$X(Z) = \frac{z}{z-(3)} - \frac{z}{z-(2)}$$
Taking IzT
(i) ROC $|z| > 3$

$$x[n] = (3)^{n}u[n] - (2)^{n}u[n]$$
(ii) ROC $|z| < 2$

$$x[n] = -(3)^{n}u[-n-1] + (2)^{n}u[-n-1]$$
ROC $2 < |z| < 3$ $x[n] = -(3)^{n}u[-n-1] - (2)^{n}u[n]$
Q.9 a. The random variable x is expresses as its density function

$$f_{x}(x) = \begin{cases} \alpha z e^{-\alpha x} x > 0; \alpha = cons \tan t \\ 0 & otherwise \end{cases}$$
Then, find expected values E[x] and E[x²].
Answer:

$$E[x] = \mu_{x} = \int_{-\infty}^{\infty} xf_{x}(x)dx$$

$$= \int_{-\infty}^{\infty} \alpha x e^{-\alpha x}dx$$

$$= \alpha \left[x \left(\frac{e^{-\alpha x}}{-\alpha} \right)_{0}^{\infty} + \frac{n}{6} \frac{e^{-\alpha x}}{\alpha} dx \right]$$

2

SIGNALS AND SYSTEMS **JUN 2015**

$= -\frac{1}{\alpha} e^{-\alpha x} \bigg _{0}^{\infty} = \frac{1}{\alpha}$	2
And $E[X^2] = \mu_x = \int_{-\infty}^{\infty} x f_x(x) dx$	
$= \alpha \int_0^\infty x^2 \alpha e^{-\alpha x} dx$	
$= \alpha \left[x \left(\frac{x^2 e^{-\alpha x}}{-\alpha} \right) \bigg _{0}^{\infty} - \int_{0}^{\infty} 2x e^{-\alpha x} dx \right]$	
$E[X^2] = \frac{2}{\alpha}$	
b. What are the properties of wide sense stationary process?	4
Answer: i) A random process X(t) is called wide sense stationary if it satisfies	4
a. Mean of the process is constant	
b. autocorrelation function is independent of time	
c. variance of the process is constant	
c. Write properties of power spectral density. Answer:	
Article 1.7 Text book – II, Page 46 – 47.	4

TEXT BOOKS

1. Signals and Systems, A.V. Oppenheim and A.S. Willsky with S. H. Nawab, Second Edition, PHI Private limited, 2006

2. Communication Systems, Simon Haykin, 4th Edition, Wiley Student Edition, 7th Reprint 2007