Q.2 a. Show that every analytic function w = f(z) define two families of curves, which from an orthogonal system.
 (8)
 Answer:

b. Show that the transformation $\omega = \sin z$, maps the families of lines x = constant and y = constant into two families of confocal central conics. (8) Answer:

Q.3 a. If
$$f(a) = \int_{c}^{3z^{2} + 7z + 1} dz$$
, where C is the circle $x^{2} + y^{2} = 4$, find the values of
(i) F'(1-i) (ii) F''(1-i) (8)
Answer:
Let $\int (n) = 3z^{2} + 7z + 1$
i) By Cancely's the grad formula
 $\int (d) = \int \frac{5(2i)}{2-d} dz$ Wheele $z = d$ is point within C
 c
 $F(d) = \int \frac{f(z)}{2-d} dz = 2 \pi i f(d)$ or $\int \frac{3z^{2} + 7z + 1}{2-d} = 2\pi i [3d^{2} + 7d + 1]$
Where $d = 1 - i$ which is within C: $\pi ey^{2} = 4$
Hence $\int \frac{f(d)}{2} = 2\pi i (6d + 7)$ or $F'(1-i) = 2\pi i [6+i+7] = 2\pi i (6+i+3)$
 $e^{2} - 6i + 1$

b. Find the Laurent's series expression of $\frac{z^2 - 6z - 1}{(z - 1)(z - 3)(z + 2)}$ in the region 3 < |z + 2| < 5. (8)

By produlf such me

$$\frac{Z^{2}-6Z*1}{(Z+1)(Z+3)(Z+2)} = \frac{1}{Z-1} - \frac{1}{Z-3} + \frac{1}{Z+2}$$

$$= \frac{1}{Z+2-3} - \frac{1}{Z+2-5} + \frac{1}{Z+2}$$
For the regim $3 \le 12+21 \le 5$,
 $= \frac{1}{Z+2} \left[1 - \frac{3}{Z+2} \right]^{1} + \frac{1}{5} \left[1 - \frac{2+2}{5} \right]^{1} + (2+2)^{1}$

$$= \frac{1}{Z+2} \left[1 + \frac{3}{(Z+2)} + \frac{3^{2}}{(Z+2)^{2}} \right]^{2} + \frac{3^{3}}{(Z+2)^{2}} = \frac{3}{(Z+2)^{2}} + \frac{3^{2}}{(Z+2)^{2}} + \frac{3^{3}}{(Z+2)^{2}} = \frac{3}{(Z+2)^{2}} + \frac{3^{2}}{(Z+2)^{2}} + \frac{3^{2}}{(Z+2)^{2}} = \frac{1}{(Z+2)^{2}} + \frac{1}{(Z+2)^{2}} = \frac{1}{(Z+2)^{2}} = \frac{1}{(Z+2)^{2}} + \frac{1}{(Z+2)^{2}} = \frac{1}{(Z+2)^{2}} = \frac{1}{(Z+2)^{2}} + \frac{1}{(Z+2)^{2}} = \frac{1}{(Z+2)^{2$$

Q.4 a. Show that Curl Curl \vec{F} = grad div \vec{F} - $\nabla^2 \vec{F}$.

Answer:

Clurl curl
$$\vec{F} = \nabla x (\nabla x \vec{F}) = (\vec{z} \cdot \vec{z}_{n}) x [(i\vec{z}_{n})x\vec{F}]$$

$$= (\vec{z} \cdot \vec{z}_{n}) x [(ix \vec{z}_{n})\vec{F} + kx \vec{z}_{n}]$$

$$= \sum (ix [ix \vec{z}_{n})\vec{F} + jx \vec{z}_{n}] + kx \vec{z}_{n}\vec{F} + kx \vec{z}_{n}]$$

$$= \sum (i \cdot \vec{z}_{n}) i - (i \cdot i) \vec{z}_{n} + kx \vec{z}_{n}\vec{F} + kx \vec{z}_{n}\vec{F}]$$

$$= \sum ((i \cdot \vec{z}_{n})) i + ((i \cdot \vec{z}_{n})) j + ((i \cdot \vec{z}_{n})) j + ((i \cdot \vec{z}_{n})) k - (i \cdot k) \vec{z}_{n})$$

$$= \sum (\vec{z}_{n}) (i \cdot \vec{z}_{n} + j \cdot \vec{z}_{n} + kx \vec{z}_{n}) - \vec{\nabla}\vec{F}$$

$$= \nabla ((\vec{\nabla}, \vec{F}) - \vec{\nabla}\vec{F} = g \text{ sud } (ckv\vec{F}) - \vec{\nabla}\vec{F} = RHS$$

b. Find the values of λ and μ so that the surface $\lambda x^2 y + \mu z^3 = 4$, may cut the surface $5x^2 = 2yz + 9x$ orthogonally at (1, -1, 2). (8)

Answer:

(b) Let
$$f_1 = \lambda \lambda y + \mu z^3 - 4 = 0$$
 and $f_2 = 5\lambda^2 - 2yz - 4\lambda = 0$
 $\nabla f_1 = 2\lambda \lambda y + \lambda \lambda y + \mu z^2 + \lambda w = 1$ and $\nabla f_2 = (10\lambda - 4)i - 2z - 2y + \lambda y + \lambda y + \mu z^2 + \lambda w = 1$
At privit (1,5+1,2)
 $\nabla f_1 = -2\lambda i + \lambda y + 12\mu + \lambda w = 1$ and $\nabla f_2 = i - 4y + 2k$
 $9 + w = 9 \text{ me} \text{ for ease end osterogenery}, \nabla f_1 \cdot \nabla f_2 = 0$
 $i + -2\lambda - 4\lambda + 24\mu = -6\lambda + 34\mu = 0$
 $\int e^{-2\lambda - 4\lambda} + 24\mu = -6\lambda + 34\mu = 0$
 $\int e^{-2\lambda - 4\lambda} + 24\mu = -6\lambda + 34\mu = 0$
 $\int e^{-2\lambda - 4\lambda} + 24\mu = -6\lambda + 34\mu = 0$
 $\int e^{-2\lambda - 4\lambda} + 24\mu = -6\lambda + 34\mu = 0$
 $\int e^{-2\lambda - 4\lambda} + 24\mu = -6\lambda + 34\mu = 0$
 $\int e^{-2\lambda - 4\lambda} + 24\mu = -6\lambda + 34\mu = 0$
 $\int e^{-2\lambda - 4\lambda} + 24\mu = -6\lambda + 34\mu = 0$
 $\int e^{-2\lambda - 4\lambda} + 24\mu = -6\lambda + 34\mu = 0$

(8)

Q.5 a. If $\vec{F} = (5xy - 6x^2)$ i + (2y - 4x) j, evaluate $\int_C \vec{F} \cdot d\vec{R}$ along the curve C in the xy - plane, $y = x^3$ from the point (1, 1) to (2, 8). (8)

Answer:

$$\begin{aligned} & \text{Here } \vec{F} = (5\pi y - 6\pi^2)i' + (2y - 4\pi)j' \\ & \text{i} \int \vec{F} \cdot d\vec{F} = \int (5\pi y - 6\pi^2) dn + (2y - 4\pi)dy \\ & \text{Putting } y = n^3, \text{ where } \pi \text{ free forem } 1 + \sigma 2, \\ &= \int [(5\pi \cdot n^3 - 6\pi^2)dy + (2n^2 - 4\pi)\pi^3 dn] \\ &= \int [\pi^5 - 2n^3 + \pi^6 - 3\pi^4]^2 = 35 \end{aligned}$$

b. Use Divergence theorem to evaluate $\iint_{S} \vec{F} \cdot \vec{dS}$, where $\vec{F} = x^{3}i + y^{3}j + z^{3}k$, and S is the surface of the sphere $x^{2} + y^{2} + z^{2} = a^{2}$ (8)

Answer:

Using divergener theorem

$$\iint \vec{F} \cdot d\vec{S} = \iint div \vec{F} dv = \iint \vec{S}(n^2 + 2^2) dndydz$$
where N is Volume bounded by the garface S of splume n^2 + 2^2 = a^2
let us change it to obtained by the garface S of splume n^2 + 2^2 = a^2
let us change it to obtained pulse crock notes by philling.

$$\stackrel{N=}{\longrightarrow} risin 0 \cos \theta, y = rsin 0 \sin \theta, z = rcos 0 so that dnougd = 2 tomodod dodf
and of from 0 to 2 to - 2$$

Q.6 a. Estimate the values of f(22) and f(42) from the following available data: (8)

x:	20	25	30	35	40	45
$f(\mathbf{x})$:	354	332	291	260	231	204

$$\begin{aligned} & \left(df \, \gamma_{0} = 20, \, \chi_{1} = 22, \, R = 5 \right) \\ & \vdots \, f = \frac{\gamma_{120}}{40} = \frac{\gamma_{2} - 2\pi}{5} = a_{4} \\ & \beta_{11} \left(f (a_{1}) + \frac{\beta_{11} + \beta_{11}}{40} + \frac{\beta_{11} + \beta_{$$

b. Find an approximate value of $\log_e 5$ by calculating to 4 decimal places, by Simpson's $\frac{1}{3}$ rule, $\int_{0}^{5} \frac{dx}{4x+5}$, by dividing the range into 10 equal parts. (8)

Here
$$y = f(n) = \frac{1}{4n+5}$$

Shuke same $(0,5)$ in 10 finks
 $cf = f(n) = \frac{1}{2}$. The values
 cae_{sh} and $n = \frac{1}{4n+5}$ are calculated
 ae_{sh} and $m = \frac{1}{4n+5}$ are calculated
 $rathers of n$.
By Simpson's $\frac{1}{3}$ bule,
 $\int_{0}^{5} \frac{dn}{4n+5} = \frac{1}{2} \left[(\frac{1}{3} + \frac{1}{3}) + \frac{1}{3} + \frac{1}{3}$

Q.7 a. Solve the equation
$$\frac{y-z}{yz} p + \frac{z-x}{zx} q = \frac{x-y}{xy}$$
 (8)
Answer:
The subscharp equation $e + tie g + ev g + ev s = \frac{1}{xy}$
Using highly lies 101,1 and $7_1 r_0 z = \frac{100 dz}{7 - y}$
Using highly lies 101,1 and $7_1 r_0 z = \frac{102 ch + 2ndey eng z e}{0}$
 $i = \frac{32 ch + 2ndey}{2 - n} = \frac{100 dz}{7 - y}$
Using highly $r_0 z = \frac{32 ch + 2ndey}{2 - n} = \frac{102 ch + 2ndey eng z e}{0}$
 $i = \frac{32 ch + 2ndey}{2} + neg dz = e$ and $ch + dey ed z = e$
 $\frac{1}{2} ch + 2ndey + neg dz = e$ and $ch + dey ed z = e$
 $\frac{1}{2} ch + 2ndey + neg dz = e$ and $ch + dey ed z = e$
 $\frac{1}{2} ch + \frac{1}{2} t + \frac{dz}{2} = e$ and $ch + dey ed z = e$
 $\frac{1}{2} ch + \frac{1}{2} t + \frac{dz}{2} = e$ and $ch + dey ed z = e$
 $\frac{1}{2} ch + \frac{1}{2} t + \frac{dz}{2} = e$ and $ch + dey ed z = e$
 $\frac{1}{2} ch + \frac{1}{2} t + \frac{dz}{2} = e$ and $ch + dey ed z = e$
 $\frac{1}{2} ch + \frac{1}{2} t + \frac{dz}{2} = e$ and $ch + dey ed z = e$
 $\frac{1}{2} ch + \frac{1}{2} t + \frac{dz}{2} = e$ and $ch + dey ed z = e$
 $\frac{1}{2} ch + \frac{1}{2} t + \frac{1}{2} t$

Substitutuightung

$$\frac{dn}{\pi^2 = q} = \frac{dy}{2\pi y - p} = \frac{dz}{p\pi^2 = 2pq + 2q\pi y} = \frac{dp}{3z - 2qy} = \frac{dq}{0}$$
in $dq = 0$ or $q = c_{y}$
Dutting $q = z$ in $(0, p) = \frac{3\pi(2 - c_{y})}{\pi^2 = c}$
Substituting for p and q in $dz = \frac{pdn + q}{pdn + q}$, $dz = \frac{3\pi dn}{\pi^2 = c}$
 $dz = \frac{3\pi(z - c_{y})}{\pi^2 = c}$ or $\frac{dz - cdy}{z - cy} = \frac{3\pi dn}{\pi^2 - c}$
Substituting for $p = \log(\pi^2 - c) = \log(\pi^2 - c) + \log(\pi^2 - c)$
Substituting for $p = \log(\pi^2 - c) + \log(\pi^2 - c)$

© iete

Q.8 a. A student takes his examination in four subjects A, B, C, D. His chances of passing in A are $\frac{4}{5}$, in B $\frac{3}{4}$, in C $\frac{5}{6}$ and in D are $\frac{2}{3}$. To qualify, he must pass in A and at least two other subjects. What is the probability that he qualifies. (8)

Answer:

Chances of A part paging in Gulferts A, B, C, Dare 4, 3, 2, 2
and therefore Chances of not paging in A, B, C, Dare 5, 3, 4, 5, 2
To Thetify, Student Last pass in A and otherst in two eller Subjects
menne, the public A and B and contratin D or in A, B, D but metric
or in A, C, D but net in B Os in All Albert, B.
Hence acgul foul. is = 4.3 51 + 4.3 224 + 4 + 52 + 4.3 52
= 4 [
$$\frac{15+6+10+30}{72}$$
] = $\frac{4^{-7}61}{572}$ = $\frac{61}{70}$

b. A ball is transferred from an urn containing two white and three black balls to another urn containing four white and five black balls. A white ball is then taken out from second urn. What is the probability that the transferred ball is white? (8)

A ball is transforred form 154 win to another time It here to blief
or black Let A1 could by the these two events afternessering
a while end hblack ball. Let B he the events of drawing
a while ball form Socied with

$$P(A_1) = \frac{2}{243} = \frac{2}{5}$$
, $P(A_2) = \frac{3}{243} = \frac{3}{5}$
 $P(B/A_1) = \frac{2}{243} = \frac{2}{5}$, $P(B/A_2) = \frac{4}{16} = \frac{4}{10}$
Hence Poil that the form (ball holide
 $P(A_1/B) = \frac{P(A_1)P(B/A_1)}{2P(B_1/A_1)}$, $P(B/A_2) = \frac{4}{16} = \frac{4}{10}$
 $P(A_1/B) = \frac{P(A_1)P(B/A_1)}{2P(A_1)P(B/A_1)}$, $P(B/A_2) = \frac{4}{10}$
 $P(A_1/B) = \frac{P(A_1)P(B/A_1)}{2P(A_1)P(B/A_1)}$, $P(B/A_2) = \frac{4}{10}$, $P(B/A_2) = \frac{4}{10}$
 $P(B/A_1) = \frac{3}{5}$, $F(B/A_2) = \frac{4}{10}$, $F(B/A_2) = \frac{4}{10}$, $F(B/A_2) = \frac{4}{10}$, $F(B/A_2) = \frac{4}{10}$, $F(B/A_2) = \frac{10}{10}$, $F(B/A_2) = \frac{10}{50}$,

Q.9 a. The diameter of an electric cable is assumed to be a continuous variable with p.d.f, $f(x) = k x (1-x), 0 \le x \le 1$. Find the value of k and also find mean and variance of x.

(8)

Answer:
Since fin h b df,
$$\int_{-\infty}^{\infty} dm dn = 1$$
 or $\int_{0}^{1} fm dn + \int_{0}^{1} fm dn + \int_{0}^{\infty} fm dn = 1$
i'e $\int_{0}^{1} k \pi (1-n) dn = 1$ or $\int_{0}^{1} k [\frac{n^{2}}{2} - \frac{n^{3}}{3}]^{1} = 1$ i.e. $k = 6$
 $M ean = \bar{x} = \int_{0}^{1} \pi fm dn = \int_{0}^{1} \pi k \pi (1-n) dn = 6 [\frac{n^{3}}{2} - \frac{n^{4}}{4}]^{1} = \frac{1}{2}$
Variance $= \sigma^{2} = \int_{0}^{1} (\pi - \pi)^{2} fm dn$
 $= \int_{0}^{1} (\pi - \pi)^{2} k \pi (1-n) dn = 6 \int_{0}^{1} (x^{2} - 9\pi \pi + \pi^{2}) \pi (1-x) dn$
 $= 6 [\frac{1}{4} - \frac{1}{5}] - 2\pi (\frac{1}{5} - \frac{1}{4}) + \pi^{2} (\frac{1}{5} - \frac{1}{3})]$
 $= 6 [\frac{1}{4} - \frac{1}{12} + \frac{1}{4} + \frac{1}{6}] = \frac{1}{2}0$

b. A Car- hire firm has two cars which it hires out day by day. The number of demands for a car on each day is distributed as a Poisson distribution with mean 1.5, calculate the proportion of days

(i) on which there is no demand

(ii) on which demand is refused $(e^{-1.5} = 0.2231)$ (8)

(ii') Poch. Hurr ædemand i Sufuzed
= Poch for demand og 3 cors + Poce for demand og 4 cors e
= P(3) + P(4) + P(5) - e - - -
= 1 - P(0) - P(1) - P(2) [...
$$\frac{\infty}{2}$$
 P(\mathbf{r}) = $\sum \frac{m}{2} \frac{m}{2} = 1$]
= $1 - \frac{e^m}{2} \frac{m^0}{2} - \frac{e^m}{2} \frac{m}{2} - \frac{e^m}{2} \frac{m}{2}$.
= $1 - e^{-1/5} (1 + 1/5 + (1/5)^2)$
= $1 - (0.2231) (3.625) = 0.19 12.625$.

TEXT BOOKS

- I. Higher Engineering Mathematics –Dr. B.S.Grewal, 40th Edition 2007, Khanna Publishers, Delhi
- II. A Text book of engineering Mathematics N.P. Bali and Manish Goyal , 7th Edition 2007, Laxmi Publication(P) Ltd