Q. 2 a. Show that the function $f(z)=e^{-z^{-4}}(z \neq 0)$ and $f(0)=0$ is not analytic at $z=0$ although the Cauchy-Riemann equations are satisfied at that point.

Answer:
We hove, $f(z)=e^{-z^{-4}}=e^{-\frac{1}{(x+i y)^{4}}}=e^{-\frac{(x-i y)^{4}}{\left(x^{2}+y^{2}\right)^{4}}}$

$$
-\frac{1}{r^{8}}\left(x^{4}+y^{4}-6 x^{2} y^{2}-4 i x^{3} y+4 i x y^{3}\right)
$$

$$
=e^{-1} x^{8} x^{4}+y^{4}-6 x^{2} y^{2} \text { 4ixy }\left(x^{2}-y^{2}\right) \text { where, } r^{2}=x^{2}+y^{2}
$$

$$
=e^{-\frac{1}{r} 8 x^{4}+y^{7}-6 x^{2} y^{2}} \cdot e^{4 i x y \frac{(x-y)}{r^{8}}}
$$

$$
\underline{h}=e^{-\frac{1}{8}\left(x^{4}+y^{4}-6 x^{2} y^{2}\right)}\left[\cos \left\{\frac{4 x y\left(x^{2}-y^{2}\right)}{-x^{8}}+i \sin \left\{\frac{4 x y\left(x^{2}-y^{2}\right)}{r^{8}}\right\}\right]\right.
$$

$$
\text { Now, } \quad \frac{\partial u}{\partial x}=\operatorname{Lit}_{x \rightarrow 0} \frac{u(x, 0)-u(0,0)}{x}=\operatorname{Lim}_{x \rightarrow 0} \frac{e^{-x^{-4}}-0}{x}=\operatorname{Lit}_{x \rightarrow 0} \frac{1}{x e^{\frac{1}{x^{4}}}}
$$

1
$=\operatorname{Lt}_{x \rightarrow 0}\left[1+\frac{1}{x^{4}}+\frac{1}{2 x^{8}}+\cdots\right]$
$=\operatorname{Lit}_{x \rightarrow 0} \frac{1}{x+\frac{1}{x^{3}}+\frac{1}{2 x^{7}}+\cdots}=\frac{1}{\infty}=0 \quad y_{y^{\frac{1}{4}}}$
Similarly, $\frac{\partial u}{\partial y}=\operatorname{Lt}_{y \rightarrow 0} \frac{u(0, y)-u(0,0)}{y}=\operatorname{Lt}_{y \rightarrow 0} \frac{e-0}{y}=0$
and $\frac{\partial v}{\partial x}=\operatorname{Lt}_{x \rightarrow 0} \frac{v(x, 0)-v(0,0)}{x}=\operatorname{Lt}_{x \rightarrow 0} \frac{0-0}{y}=0$
and $\quad \frac{\partial v}{\partial y}=\operatorname{li}_{x \rightarrow 0} \frac{0-0}{y}=0 \quad \underline{6}$
Hence $C-R$ equations are satisfied at the origin. Now $f(z) \hat{n}$ not analytic at $z=0$. Because $f(z)$ has an infinite discontinuity at the origin.

Now, we have, $f^{\prime}(0)=\operatorname{lt}_{z \rightarrow 0} \frac{f(z)-f(0)}{z}=\operatorname{lt}_{z \rightarrow 0} \frac{1}{z e^{\frac{1}{z 4}}}$

$$
=\operatorname{Lt}_{z \rightarrow 1} \frac{1}{r e^{i \pi / 4}} \cdot \frac{1}{\exp \left[-r^{-4}\right]} \text { Taking } z=r e^{i \pi / 4}
$$

$$
=\operatorname{Lt}_{r \rightarrow 0} \frac{1}{r e^{i \times 14}} \cdot \frac{1}{\exp \left(-\frac{1}{r^{4}}\right)}=\infty
$$

Hence $f^{\prime}(z)$ does not exist.
b. Find the bilinear transformation which maps the point $z=1, i,-1$ into the points $\mathbf{w}=\mathbf{i}, \mathbf{0},-\mathbf{i}$. Hence find the image of $|z|<1$.
Answer:
We, have the bifinear transformation,

$$
w=\frac{a z+b}{c z+d}
$$

Now putting the values of ω and z in (1), we get,

$$
\begin{align*}
i & =\frac{a+b}{c+d}, \\
0 & =\frac{a i+b}{c i+d}, \\
-i & =\frac{-a+b}{-c+d} \\
\Rightarrow a+b & =i(c+d) \tag{ri}\\
b & +i a=0 \\
(-a+b) & =i(-c+d) \tag{4}
\end{align*}
$$

$$
-
$$

from (III) $b=-i a$
Now adding (iii) and (iv),

$$
\begin{aligned}
& \text { and (iv), } \\
& 2 b-2 i c=0 \Rightarrow c=\frac{b}{i}=-a
\end{aligned}
$$

Now from (II) and (iv)

$$
2 a-2 i d=0 \Rightarrow d=\frac{a}{i}=i a
$$

Putting all these values in (1)

$$
\begin{array}{r}
w=\frac{a z-i a}{-a z-i a} \\
\Rightarrow \quad W=\frac{i-z}{i+z}
\end{array}
$$

Which in the required Bilinear transformation.
Now, from (v), we have

$$
z=i\left(\frac{1-w}{1+w}\right)
$$

$\therefore|z|<1 \dot{\text { mapped into the region. }}$

$$
|z|<1 \dot{b} \text { mapped into }\left|i\left(\frac{1-w}{1+w}\right)\right|<1 \Rightarrow \frac{|i||1-w|}{|1+w|}<1
$$

$$
\Rightarrow \quad|1-w|<|1+w|
$$

But, $w=u+i v$

$$
\begin{aligned}
& \text { ut, } w=u+i v \\
& \text { so, } \quad|1-u-i v|<|1+u+i v| \\
& \Rightarrow \quad\left(1-u^{2}\right)+v^{2}<(1+u)^{2}+v^{2} \\
& \Rightarrow \quad 4>0 \quad \text { \& }
\end{aligned}
$$

Q. 3 a. For the function $f(z)=\frac{4 z-1}{z^{4}-1}+\frac{1}{z-1}$, find all Taylor or Laurent series about the centre zero.
Answer:

$$
\begin{align*}
& \text { we have, } f(z)=\frac{4 z-1}{z^{4}-1}+\frac{1}{z-1} \tag{8}\\
& \text { Poles due } z^{4}-1=0 \\
& \Rightarrow \begin{aligned}
& \Rightarrow \quad z(z)==-\frac{3}{4(1-z)}+\frac{5}{4(1+z)}+\left(-2 z+\frac{1}{2}\right) \frac{1}{1+z^{2}}-\frac{1}{1-z} \\
&=-\frac{7}{4}(1-z)^{-1}+\frac{5}{4}(1+z)^{-1}+\left(-2 z+\frac{1}{2}\right)\left(1+z^{2}\right)^{-1} \\
&=-\frac{7}{4}\left[1+z+z^{2}+z^{3}+\cdots\right]+\frac{5}{4}\left[1-z+z^{2}-z^{3}+\cdots\right] \\
&+\left(-2 z+\frac{1}{2}\right)\left[1-z^{2}+z^{4} \cdots\right] \\
&=-\frac{7}{4}+\frac{7}{4} z-\frac{7}{4} z^{2}+\frac{7}{4} z^{3} \cdots+\frac{5}{4}-\frac{5}{4} z+\frac{5}{4} z^{2}-\frac{5}{4} z^{3} \\
&+\cdots-2 z+2 z^{3}-2 z^{5}+\cdots+\frac{1}{2}-\frac{z^{2}}{2}+\frac{z^{4}}{2}+\cdots \\
&=-\frac{3}{2} z-z^{2}+\frac{5}{2} z^{3}+\cdots \text { Ans }
\end{aligned}
\end{align*}
$$

b. Find the residue of $f(z)=\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)}$ and $f(z)=e^{z} \operatorname{cosec}^{2} z$ at all its poles in the finite plane.

Answer:

we have, $f(z)=\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)}$
Putting denominator $=0$
$A(z+1)^{2}\left(z^{2}+4\right)=0$
$f(z)$ has a double pole at $z=-1$ and simple pole at $z= \pm 2$:
$f(z)$ residue at at $z=-1$,

$$
\begin{aligned}
& \text { Mow residue at at } z=-1, \\
& L_{z \rightarrow-1} \frac{d}{d z}\left\{(z+1)^{2} \frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)}\right\} . \\
& =L_{z \rightarrow-1} \frac{\left(z^{2}+4\right)(2 z-2)-\left(z^{2}-2 z\right)(2 z)}{\left(z^{2}+4\right)^{2}}=-\frac{14}{25} \\
& \text { Now residue at } z=2 i \\
& L^{2} \rightarrow 2 i\left[(z-2 i) \frac{\left(z^{2}-2 z\right)}{(z+1)(z-2 i)(z+2 i)}\right]=\frac{-4-4 i}{(2 i+1)^{2}(4 i)}=\frac{7+i}{25}
\end{aligned}
$$

and residue at $z=-2 i$

$$
i^{2} \rightarrow 2 i\left[(z+2 i) \frac{z^{2}-2 z}{(z+1)^{2}(z-2 i)(z+2 i)}\right]=\frac{7-i}{25}
$$

we have $f(z)=e^{z} \operatorname{cosec}^{2} z$

$$
\begin{array}{r}
=\frac{e^{2}}{\sin ^{2} z} \text { has double poles at } z=0, \pm \pi, \pm 2 \pi \\
\cdots \text { ie } z=m \pi
\end{array}
$$

where $m=0, \pm, \pm, 2$.
Residue at $z=m \pi i, \pm \pm, 2 \dot{L}=m \frac{d}{d z}\left\{(z-m \bar{n})^{2} \frac{e^{z}}{\sin ^{2} z}\right\}$

$$
\operatorname{Lf}_{z \rightarrow m \pi} \frac{e^{z}\left[(z-m \pi)^{2} \sin z+2(z-m \pi) \sin z-2(z-m n)^{2} \cos z\right]}{\sin ^{3} z}
$$

Punting $z-m \pi=u \Rightarrow z=u+m \pi$

$$
\begin{aligned}
& \operatorname{Lt}_{u \rightarrow 0} e^{u+m \pi}\left\{\frac{u^{2} \sin u+2 u \sin u-2 u^{2} \cos u}{\sin 3 u}\right\} \\
& =\operatorname{Lt}_{u \rightarrow 0} e^{m \pi}\left\{\frac{u^{2} \sin u+2 u \sin u-2 u^{2} \cos u}{\sin ^{3} u}\right\} \\
& =e^{\operatorname{m\pi } \pi} \operatorname{Lt}_{u \rightarrow 0}\left[\frac{u^{2} \sin u+2 u \sin u-2 u^{2} \cos u}{u^{3}} \cdot \frac{u^{3}}{\sin ^{3} u}\right]
\end{aligned}
$$

Answer:

$$
\text { We have } \bar{\gamma}=x \hat{i}+y \hat{j}+z \hat{k} \quad \therefore \hat{\gamma} \hat{k}=z
$$

Now, $\quad f=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$

$$
\frac{\partial f}{\partial x}=\frac{1}{2\left(x^{2}+y^{2}\right)} 2 x=\frac{x}{x^{2}+y^{2}}
$$

Similarly, $\quad \frac{\partial f}{\partial y}=\frac{y}{x^{2}+y^{2}}, \quad \frac{\partial f}{\partial z}=0$

$$
\begin{aligned}
\therefore \text { grad } \begin{aligned}
f & =\hat{e} \frac{\partial f}{\partial x}+\hat{j} \frac{\partial f}{\partial y}+\hat{k} \frac{\partial f}{\partial z} \\
& =\frac{x}{x^{2}+y^{2}} \hat{i}+\frac{y}{x^{2}+y^{2}} \hat{j}+0 \hat{k} \\
& =\frac{x i+y \hat{j}}{\left(x^{2}+y^{2}\right)}=\frac{\bar{\gamma}-z \hat{k}}{(x \hat{i}+y \hat{j}) \cdot\left(x \hat{i}+y j^{n}\right)} \\
& =\frac{\bar{r}-z \hat{k}}{(\bar{\gamma}-z \hat{k}) \cdot(\bar{\gamma}-z \hat{k})}
\end{aligned} \quad . \quad \text {, }
\end{aligned}
$$

Now replacing z by $\bar{\gamma} \cdot \hat{k}$, we get

$$
\text { grad } f=\frac{\bar{\gamma}-(\hat{k} \cdot \bar{\gamma}) \hat{k}}{\{\bar{r}-(\hat{k} \cdot \bar{r}) \hat{k}\} \cdot\{\bar{r}-(\hat{k} \bar{r}) \hat{k}\}} \text {. Hencefroret }
$$

b Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point (2, -1,2).
Answer:
Let $f_{1}=x^{2}+y^{2}+z^{2}-9=0$ and $f_{2}=x^{2}+y^{2}-z-3=0$
Thew

$$
\begin{aligned}
N_{1} & =\nabla f_{1} \text { at }(2,-1,2) \\
& =(2 x I+2 y J+2 z k) \text { at }(2,-1,2)=4 I-25+4 k
\end{aligned}
$$

and

$$
\begin{aligned}
N_{2} & =\nabla f_{2} \text { at }(2,-1,2) \\
& =(2 x I+2 y J-k) \text { at }(2,-1,2)=4 I-2 J-k
\end{aligned}
$$

Since the angle θ between the two surfaces at the point \dot{n} the angle between their normals at that point and N_{1}, N_{2} are the normals at $(2,-1,2)$ - 10 the given surfaces, therefore,

$$
\begin{aligned}
& 2 \text { are the normals at } \begin{aligned}
\cos \theta & =\frac{N_{1} \cdot M_{2}}{n_{1} \cdot n_{2}}=\frac{(4 I-2 J+4 k) \cdot(4 I-2 J-k)}{\sqrt{16+4+16} \cdot \sqrt{16+4+1}}= \\
& =\frac{4(4)+(-2)(-2)+4(-1)}{6 \sqrt{21}}=\frac{16}{6 \sqrt{21}}
\end{aligned} \\
& \text { Hence the required angle } \theta=\cos ^{-1}\left(\frac{8}{3 \sqrt{21}}\right) \text { Ans }
\end{aligned}
$$

Q. 5 a. Verify Green's theorem for $\int_{C}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right]$, where C is bounded by $y=x$ and $y=x^{2}$
Answer:

$$
\begin{align*}
& \text { Here } \phi=x y+y^{2} \text { and } \psi=x^{2} \tag{8}\\
& \therefore \quad \int_{c}(\phi d x+\psi d y)=\int_{c_{1}}+\int_{c_{2}} \\
& y \text { ionics of }
\end{align*}
$$

Along $c_{1}, y=x^{2}$ and x varies from 0 to 1

$$
\therefore \quad \int_{c_{1}}=\int_{0}^{1}\left[\left\{x\left(x^{2}\right)+\left(x^{2}\right)\right\}^{2} d x+x^{2} d\left(x^{2}\right)\right]
$$

$$
=\int_{0}^{1}\left(3 x^{3}+x^{4}\right) d x=\frac{19}{20}
$$

along $c_{2}, y=x$ and x varies 1 to 0 .

$$
\begin{aligned}
& \text { Along } c_{2}, y=x \text { and } x \text { varies } 1 \text { to } 01 \\
& \therefore \int_{c_{2}}=\int_{1}^{0}\left[\left\{x(x)+\left(x^{2} d x\right\}+x^{2} d(x)\right]=\int_{1}^{0} 3 x^{2} d x=-1\right. \\
& \text { Thus }
\end{aligned}
$$

Thus $\int_{c}(\phi d x+\psi d y)=\frac{19}{20}-1=-\frac{1}{20}$
Also,

$$
\begin{align*}
& \left.\int_{C}(\phi d x+\psi d y)=\frac{\partial \psi}{20}-\frac{\partial \phi}{\partial y}\right) d x \cdot d y=\iint_{E}\left[\frac{\partial}{\partial x}\left(x^{2}\right)-\frac{\partial}{\partial y}\left(x y+y^{2}\right)\right] d x d y \\
& \iint_{E}\left(\frac{\partial \psi}{\partial x}\right. \tag{ii}\\
& =\int_{0}^{1} \int_{x^{2}}^{x}(2 x-x-2 y) d y \cdot d x=\int_{0}^{1}\left[x y-y^{2}\right]_{x^{2}}^{x} d x \\
& =\int_{0}^{1}\left(x^{4}-x^{3}\right) d x=-\frac{1}{20}
\end{align*}
$$

Hence Green theorem in verified from the equality of (1) and (ii) a
b. Verify Stoke's theorem for $\bar{f}=x y^{2} \hat{i}+y \hat{j}+z^{2} x \hat{k}$ for the surface of a rectangular lamina bounded by $\mathrm{x}=0, \mathrm{y}=0, \mathrm{x}=1, \mathrm{y}=2, \mathrm{z}=0$.
Answer:

$$
\begin{align*}
& z=0 \tag{8}\\
& I=\oint_{c} \bar{F} \cdot d \bar{\gamma}=\oint_{c}\left(x y^{2} \hat{i}+y \hat{j}+z^{2} x \hat{k}\right) \\
& \text { - }(\hat{i} d x \cdot \hat{j} d x) \\
& =\oint_{c} x y^{2} d x+y d y \\
& =\int_{O A}+\int_{A B}+\int_{B C}+\int_{C O} \\
& =I_{1}+I_{2}+I_{3}+I_{4} \\
& I_{1}=\int_{0 A} x y^{2} d x+y d y=0, y=0, x: 0 \rightarrow, d y=0 \\
& I_{2}=\int_{A B} x y^{2} d x+y d y=\int_{0}^{2} y d y=\left.\frac{y^{2}}{2}\right|_{0} ^{2}=2 ; \quad \begin{array}{r}
x=1, d x=0, \\
y: 0 \rightarrow 2
\end{array} \\
& y: 0 \rightarrow 2 \\
& I_{3}=\int_{B C} x y^{2} d x+y d y=\int_{1}^{0} 4 x d x=\left.2 x^{2}\right|_{0} ^{2}=-2 ; y=2, d y=0, \\
& x: 1 \rightarrow 0 \\
& I_{4}=\int_{c_{0}} x y^{2} d x+y d y=\left.\frac{y^{2}}{2}\right|_{2} ^{0}=-2 ; x=0, d x=0, y: 2 \rightarrow 0 \\
& I=2-2-2=0
\end{align*}
$$

$$
\nabla \times \bar{F}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x y^{2} & y & 0
\end{array}\right|=-2 x y \hat{k}
$$

Normal to the surface $O A B C=\hat{k}$

$$
\begin{aligned}
\therefore \int S_{s}(\nabla \times \bar{F}) \cdot n \cdot d s & =-\iint_{S^{2}} 2 x y d s \\
& =-\int_{0}^{2} \int_{0}^{1} 2 x y d x d y \\
& =-\int_{0}^{2} y d y=\left.\frac{-y}{2}\right|_{0} ^{2} \\
& =-2 \text { vented. }
\end{aligned}
$$

Q. 6 a. The values of a function $f(x)$ are given below for certain values of x :

x	0	1	3	4
$f(x)$	5	6	50	105

Find the value of $f(2)$ using Langrange's interpolation formula.
Answer:
By Langrange's

$$
f(x)=\frac{\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right)} f\left(x_{1}\right)
$$

$$
+\frac{\left(x-x_{1}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)} \quad f\left(x_{2}\right)
$$

$$
\begin{aligned}
& \left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x-x_{4}\right) \\
+ & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x_{3}\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(x_{3}-x_{4}\right)} f\left(x-x_{3}\right)
\end{aligned}
$$

$$
+\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{4}-x_{1}\right)\left(x_{4}-x_{2}\right)\left(x_{4}-x_{3}\right)} f\left(x_{4}\right)
$$

$$
\begin{aligned}
f(2)= & \frac{(2-1)(2-3)(2-4)}{(0-1)(0-3)(0-4)}(5)+\frac{(2-0)(2-3)(2-4)}{(1-0)(1-3)(1-4)}(6) \\
& +\frac{(2-0)(2-1)(2-4)}{(3-0)(3-1)(3-4)}(50)+\frac{(2-0)(2-1)(2-3)}{(4-0)(4-1)(4-3)}(105) \\
= & \frac{1 \times-1 \times-2}{-1 \times-3 \times-4}(5)+\frac{2 \times-1 \times-2}{1 \times-2 \times-3} \cdot(6) \\
& +\frac{2 \times 1-2}{3 \times 2 \times-1}(50)+\frac{2 \times 1-1}{4 \times 3 \times 1}=\frac{105)}{6}=19 \\
= & -\frac{5}{6}+4+\frac{100}{3}-\frac{35}{2}=\frac{-5+24+200-105}{6}=\frac{114}{6}
\end{aligned}
$$

b. Evaluate $\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$ using
(i) Simpson's $\frac{1}{3}$ rule taking $h=\frac{1}{4}$
(ii) Simpson's $\frac{1}{8}$ rule taking $\mathbf{h}=\frac{1}{6}$

Hence compute an approximate value of π in each case.
Answer:
(1) The values of $f(x)=\frac{1}{1+x^{2}}$ at $x=0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1$ are giver

$$
\begin{array}{cccccc}
x: & 0 & \frac{1}{4} & \frac{1}{2} & \frac{3}{4} & 1 \\
f(x) & : & 1 & 0.9412 & 0.8000 & 0.6400 \\
& y_{0} & y_{1} & y_{2} & 0.5000 \\
& & & y_{4}
\end{array}
$$

by Simpsons $\frac{1}{3}$ Rule

$$
\begin{aligned}
& \text { by simpsons } \frac{1}{3} \text { Rule } \\
& \qquad \begin{aligned}
\int_{0}^{1} \frac{d x}{1+x^{2}} & =\frac{h}{3}\left[\left(y_{0}+y_{4}\right)+4\left(y_{1}+y_{3}\right)+2 y_{2}\right] \\
& =\frac{1}{12}[(1+0.5000)+4(0.9412+0.6400)+2(0.8000)] \\
& =0.7854 \\
\text { Also } \quad \int_{0}^{1} \frac{d x}{1+x^{2}} & \left.=\tan ^{-1} x\right]_{0}^{1}=\tan ^{-1} 1=\frac{\pi}{4}, \therefore \pi \approx 0.7854 \Rightarrow \pi \approx 3.1416
\end{aligned}
\end{aligned}
$$

(ii) The value of $f(x)=\frac{1}{1+x^{2}}$ at $x=0, \frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \frac{4}{6}, 5 / 6,1$ are given below,

$$
\begin{array}{cccccccc}
x: & 0 & \frac{1}{6} & 1 / 3 & y_{2} & 2 / 3 & 516 & 1 \\
f(x) & 1 & 0.9730 & 0.9000 & 0.8000 & 0.6923 & 0.5902 & 0.5000 \\
& y_{0} & y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6}
\end{array}
$$

by Simpsons Rule $\frac{3}{8}$,

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{1+x^{2}}= & \frac{3 k}{8}\left[\left(y_{0}+y_{6}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}\right)+2 y_{3}\right] \\
= & \frac{1}{16}[(1+0.5000)+3(0.9730+0.9000+0.6923 \\
& +0.5902)+2(0.8000)] \\
= & 0.7854
\end{aligned}
$$

Also, $\quad \int_{0}^{1} \frac{d x}{1+x^{2}}=\frac{\pi}{4}, \therefore \frac{\pi}{4} \simeq 0.7854 \Rightarrow \pi \simeq 3.1416$
Q. 7 a. Apply Charpit's method to solve $\left(p^{2}+q^{2}\right) y=q z$.

Answer:
Here $f=\left(p^{2}+q^{2}\right) y-q z=0$ - (i)

$$
\begin{aligned}
& \text { re } f=\left(p^{2}+q^{2}\right) y-q z=0 \\
& \therefore \frac{\partial f}{\partial x}=0, \frac{\partial f}{\partial y}=p^{2}+q^{2}, \frac{\partial f}{\partial z}=-q, \frac{\partial f}{\partial p}=2 p y, \frac{\partial f}{\partial q}=2 q y-2
\end{aligned}
$$

Charpit's auxiliary equations are

$$
\begin{aligned}
& \text { harpit's auxiliary equations are } \\
& \qquad \frac{d p}{\frac{\partial f}{\partial x}+p \frac{\partial f}{\partial z}}=\frac{d q}{\frac{\partial f}{\partial y}+q \frac{\partial f}{\partial z}}=\frac{d z}{-p \frac{\partial f}{\partial p}-q \frac{\partial f}{\partial q}}=\frac{d x}{-\frac{\partial f}{\partial p}}=\frac{d y}{-\frac{\partial f}{\partial q}}=\frac{d F}{0} \\
& \text { or } \frac{d p}{-p q}=\frac{d q}{p^{2}}=\frac{d z}{-q z}=\frac{d x}{-2 p y}=\frac{d y}{-2 q y+z}=\frac{d F}{0}=
\end{aligned}
$$

From the first two members, we have $p d p+q d q=0$ Integrating, $p^{2}+q^{2}=a^{2}$
putting in (1), $q=\frac{a^{2} y}{2}$
\therefore from (iii), $p=\sqrt{a^{2}-q^{2}}=\sqrt{a^{2}-\frac{a^{4} y^{4}}{z^{2}}}=\frac{a}{z} \sqrt{z^{2}-a^{2} y^{2}}$

$$
\therefore d z=p d x+q d y=\frac{a}{z} \sqrt{z^{2}-a^{2} y^{2}} d x+\frac{a^{2} y}{2} d y
$$

Thtegrating, we get $\sqrt{z^{2}-a^{2} y^{2}}=a x+b$
or $z^{2}=(a x+b)^{2}+a^{2} y^{2} \quad$ which is the required complete selintion.
b. Use the method of separation of variables to solve the equation $\frac{\partial^{2} v}{\partial x^{2}}=\frac{\partial v}{\partial t}$ given that $\mathrm{v}=0$ when $\mathrm{t} \rightarrow \infty$, as well as $\mathrm{v}=0$ at $\mathrm{x}=0$ at $\mathrm{x}=0$ and $\mathrm{x}=1$
Answer:

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial x^{2}}=\frac{\partial v}{\partial t} \tag{8}
\end{equation*}
$$

Let us assume that $V=X T$ where x is a function of x only and T that of t only.

$$
\begin{aligned}
& \text { and } T \text { that of tony. } \\
& \frac{\partial v}{\partial t}=x \frac{d T}{d t} \text { and } \frac{\partial^{2} v}{\partial x^{2}}=T \frac{4}{d x^{2}}
\end{aligned}
$$

Sorbstituting these values in (1) we get

$$
\begin{align*}
& x \frac{d T}{d t}=T \frac{d^{2} x}{d x^{2}} \\
& \text { or } \frac{1}{T} \frac{d T}{d t}=\frac{1}{x} \frac{d^{2} x}{d x^{2}} \tag{ii}
\end{align*}
$$

Let each side of (ii) be equal to a constant $\left(-P^{2}\right)$

$$
\begin{equation*}
\frac{1}{T^{2}} \frac{d T}{d t}=-p^{2} \text { or } \frac{d T}{d t}+P^{2} T=0 \tag{iii}
\end{equation*}
$$ and $\frac{1}{x} \frac{d^{2} x}{d x^{2}}=-p^{2}$ or $\frac{d x^{2}}{d x^{2}}+p^{2} x=0$

Solving (III) and (iv) we have

$$
\begin{align*}
T & =c_{1} e^{-p^{2} t} \\
x & =c_{2} \cos p x+c_{3} \sin p x \\
\therefore V & =c_{1} e^{-p^{2} t}\left(c_{2} \cos p x+c_{3} \sin p x\right)
\end{align*}
$$

Putting $x=0, v=0$ in (V), we get

$$
0=c_{1} e^{-p^{2} t} c_{2}
$$

$$
\therefore c_{2}=0 \text {, since } c_{1} \neq 0
$$

on putting the value of C_{2} in (V), we get

$$
V=c_{1} e^{-p^{2} t} c_{3} \sin p x
$$

Again putting $x=l, v=0$ in (vi) we get

$$
0=c_{1} e^{-p^{2} t} \cdot c_{3} \sin \rho l
$$

since C_{3} can not be zero
$\therefore \quad \sin p l=\sin n \pi, \quad \therefore l=\frac{n \bar{n}}{l}, n$ in any integer on putting the value of P in (vi) it becomes Hence, $V=C_{1} c_{3} e^{-n^{2} \pi^{2} t / l^{2}} \cdot \sin \frac{n \bar{n} x}{l}$

$$
V=b_{n} \frac{-n^{2} \pi^{2} t}{l^{2}} \cdot \sin \frac{n \pi x}{l}, \quad b_{n}=c_{1} c_{2}
$$

This equation satisfies the given condition for all integral values of n.

Hence taking $n=1,2,3, \ldots$, , the most general solution in

$$
V=\sum_{n=1}^{\infty} b_{n} e^{\frac{-n^{2} n^{2} t}{l}} \cdot \frac{\sin n \pi x}{l} \text { Ans. }
$$

Q. 8 a. There are 6 positive and 8 negative numbers. Four numbers are chosen at random, without replacement and multiplied. What is the probability that the product is a positive number?
Answer:

To get from the product of four numbers, a positive number, the possible combinations are as follows:

$$
\text { Probability }=\frac{{ }^{6} c_{4} \times{ }^{8} c_{0}+{ }^{6} c_{2} \times{ }^{8} c_{2}+{ }^{6} c_{0} \times{ }^{8} c_{4}}{14 c_{4}}
$$

$$
=\frac{15+420+70}{\frac{14 \times 13 \times 12 \times 11}{1 \times 2 \times 3 \times 4}}
$$

$$
=\frac{505 \times 4 \times 3 \times 2 \times 1}{14 \times 13 \times 12 \times 11}
$$

$$
=\frac{505}{1001} \text { Ans } 8
$$

b. An underground mine has 5 pumps installed for pumping out storm water, the probability of any one of the pumps failing during the storm is $\frac{1}{8}$. What is the probability that (a) at least 2 pumps will be working, (b) all the pumps will be working during a particular storm?
Answer:
(a) Probability of pump failing $=\frac{1}{8}$

Probability of pump working $=1-\frac{1}{8}=\frac{7}{8}, p=\frac{7}{8}, q=\frac{1}{8}, n=5$ P (At least 2 pumps working $)=P=(2$ or 3 or 4 or 5 , pumps working)

$$
\begin{aligned}
& =p(2)+p(3)+p(4)+p(5) \\
& ={ }^{5} c_{2} p^{2} q^{3}+{ }^{5} c_{3} p^{3} q^{2}+{ }^{5} c_{4} p^{4} q+{ }^{5} c_{5} p^{5} q^{0} \\
& =10\left(\frac{7}{8}\right)^{2}\left(\frac{1}{8}\right)^{3}+10\left(\frac{7}{8}\right)^{3}\left(\frac{1}{8}\right)^{2}+5\left(\frac{7}{8}\right)^{4}\left(\frac{1}{8}\right)+\left(\frac{7}{8}\right)^{5} \\
& =\frac{1}{8^{5}}[10 \times 49+10 \times 343+5 \times 2401+16807] \\
& =\frac{1}{8^{5}}[490+3430+12005+16807] \\
& =\frac{32732}{8^{5}}=\frac{8183}{8192} \text { Ans }
\end{aligned}
$$

(b) P (All the 5 pumps working $=P(5)$

$$
\begin{aligned}
& ={ }^{5} c_{5} p^{5} q^{0} \\
& =\left(\frac{7}{8}\right)^{5}=\frac{16807}{32768}
\end{aligned}
$$

Q. 9 a. In a certain factory producing cycle tyres, there is a small chance of $\mathbf{1}$ in 500 tyres to be defective. The tyres are supplied in lots of 10 . Using Poisson distribution, calculate the approximate number of lots containing no defective, one defective and two defective types respectively in a consignment of $\mathbf{1 0 , 0 0 0}$ lots.
Answer:

$$
\begin{aligned}
& P=\frac{1}{500}, n=10 \\
& m=n p=10 \times \frac{1}{500}=\frac{1}{50}=0.02 \\
& p(r)=\frac{e^{-m} \cdot m^{r}}{r!} \text { n } \\
& \text { (i) Bobability oj no. defective }=P(0)=\frac{e^{-0.02} \cdot(0.02)^{0}}{0!} \\
&=e^{-0.02}=0.9802
\end{aligned}
$$

Number of lots containing no defective $=10,000 \times 0.9802$ $=9802$ lots
(ii) Probability of one defective $=P(1)=\frac{e^{-0.02}(0.02)^{2}}{21}$

6
Number of lots containing 1 defective

$$
=10,000 \times 0.019604=196 \text { lots }
$$

(iii) Probability of two defectives $\begin{aligned} & =P(2) \\ & =\frac{e^{-0.02}(0.02)^{2}}{L^{2}}\end{aligned}$

$$
\begin{aligned}
& =0.9802 \times 0.0002 \\
& =0.00019604 \mathrm{Ans}
\end{aligned}
$$

b. A manufacturer of envelopes knows that the weight of the envelopes is normally distributed with mean 1.9 gm and variance 0.01 gm . Find how many envelopes weighting (i) 2 gm or more, (ii) 2.1 gm or more, can be expected in a given packet of 1000 envelopes?
[Given: if \mathbf{t} is the normal variable then, $\phi(0 \leq t \leq 1)=0.3413$ and $\phi(0 \leq t \leq 2)=0.477$]
Answer:

$$
\mu=1.9 \mathrm{gm}, \text { variance }=0.01 \mathrm{gm}
$$

$$
\begin{align*}
& x=2 \text { gr or more } \tag{i}\\
& z=\frac{x-\mu}{\sigma}=\frac{2-1.9}{0.1}=\frac{0.1}{0.1}=1
\end{align*}
$$

$$
P(z>1)=\text { Area right to } z=1
$$

$$
\begin{aligned}
& =0.5-0.3413=0.1587 \\
& \text { envelopes heavier than } 2 \text { gm in a lot of } 1000 \\
& \text { en } 158.7=159 \text { (app.) }
\end{aligned}
$$

4 Number of envelopes heavier than
$=1000 \times 0.1587=158.7=159$ (app.)
Ane
(ii) $\quad z=\frac{2.1-1.9}{0.1}=\frac{0.2}{0.1}=2$
$\begin{aligned} &=\text { Area right to } 2.22 \\ &=0.5-0.4772=0.0228 \\ & \text { The number of envelopes heavier thaw } 2.1 \mathrm{gm} \text { in a } \\ & \text { lo of } 10 \text { ob }\end{aligned}$
$=1000 \times 0.228-22.8=23$ (Apps) Ans lot of 1000 .

TEXT BOOKS

I. Higher Engineering Mathematics - Dr. B.S.Grewal, 40th Edition 2007, Khanna Publishers, Delhi
II. A Text book of engineering Mathematics - N.P. Bali and Manish Goyal , 7th Edition 2007, Laxmi Publication (P) Ltd

