Solutions
Q.2 a. If
$$u = f(x, y)$$
, where $x = \Phi(t)$ and $y = \varphi(t)$, show that $\frac{du}{dt} = \frac{\partial u}{dx} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dt}$ (8)
Answer:
We have $u = f(u, y)$, $u = \varphi(t)$, $y = \varphi(t)$
 $dv = v_0$ for encetoment of $t = t$, and let corresponding incommute of $m_1 y$ and
 $u = v_0$, $v_0 = v_0$ contrast of $t = t$, and let corresponding incommute of $m_1 y$ and
 $u = v_0$, $v_0 = v_0$ contrast of $u = f(u + f(u), y + f(u))$
Substanding $\delta u = f(u + f(u), y + f(u))$
 $= f(u + \delta u, y + f(u) - f(u, y + \delta y) - f(u, y)$
 $= f(u + \delta u, y + f(u) - f(u, y + \delta y) + f(u), y + \delta y) - f(u, y)$
 $i = \frac{\delta u}{\delta t} = \frac{1}{\delta t} + \frac{1$

Taylos's expansion of f(ney) in poweres of (n-a) and (y-b) is $f(ny) = f(ab) + (n-a) f(ab) + (y-b) f(ab) + \frac{1}{2} (n-a) f(ab)$ Substituting the relies of R = 1, $b = \frac{1}{2}r \cdot \int G_{1,b} = f_{1,b} = \frac{1}{2}r \cdot \int G_{1,b} = f_{1,b} = \frac{1}{2}r \cdot \int G_{1,b} = f_{1,b} = \frac{1}{2}r \cdot \int G_{1,b} = \frac{1}{2}r \cdot \int G_{1,b$ + 12(8-5)2 fyy (A, b) ---- 0 $f(ny) = Sin(ny) = 90in(1.\frac{5}{2}) + (n-1)Kcos(\frac{5}{2}) + (\frac{3}{2})J.cos(\frac{5}{2}) + (n-1)\frac{7}{1}$ + $(n-1)(y-\frac{\pi}{2})\left[\cos \frac{\pi}{2} - \frac{\pi}{2}\sin \frac{\pi}{2}\right] - \frac{1}{2}(y-\frac{\pi}{2})(r) \int \sin \frac{\pi}{2}r$ = 1- 1 TT? (n-1)? - 5 (n-1)(y-5) - 1 (y-5)? +--- upto seemd heaven a. Change the order of integration and then evaluate $\int_{-\infty}^{\infty} \int_{-\infty}^{x} x e^{-\frac{x^2}{y}} dy dx$ (8) **Q.3** Answer: Plating the boundaries n=0, n= 0, y=0, y=n, N= to get negrin y integrating to show in fig to change added of integrating take states prolled to n- sais. It mous parallel to itself form T y=o to y=2, keeping ends on n=y, de= 20 co that changed orders af Witegoaton n p=0 n= -22 ne ch dy $\int = \frac{1}{\sqrt{2}} = \int \frac{2}{\sqrt{2}} e^{-\frac{2}{\sqrt{2}}} \frac{1}{\sqrt{2}} \frac{1}$ $= \frac{1}{2} \left[-\frac{1}{2} \frac{\partial}{\partial} \left[\frac{\partial}{\partial} \right] + \int \left[\frac{\partial}{\partial} \frac{\partial}{\partial y} \right] = \frac{1}{2} \int \frac{\partial}{\partial} \frac{\partial}{\partial} \frac{\partial}{\partial y} = \frac{1}{2}$

b. Find the volume enclosed by the cylinders
$$x^2+y^2 = 2ax$$
 and $z^2 = 2ax$ (8)
Answer:
Regil Velume bounded by the cylinders
 $T = \frac{1}{2} = 2an$ is two colored in the cylinders
 $T = \frac{1}{2} = 2an$ is two colored in the cylinders
 $T = \frac{1}{2} = 2an$ is two colored in the cylinders
 $T = \frac{1}{2} = 2an$ is two colored in the cylinders
 $T = \frac{1}{2} = 2an$ is two colored in the cylinders
 $T = \frac{1}{2} = 2an$ is two colored in the cylinders
 $T = \frac{1}{2} = 2an$ is two colored in the cylinders
 $T = \frac{1}{2} = 2an$ is two colored in the cylinders
 $T = \frac{1}{2} = 2an$ is two colored in the cylinders
 $T = \frac{1}{2} = 2an$ is two colored in the cylinders
 $T = \frac{1}{2} = 2an$ is the cylinder in the cylinders
 $T = \frac{1}{2} = \frac{1}{2} = 2an$ is two colored in the cylinders
 $T = \frac{1}{2} = \frac{1$

b. Find the eigen values and eigen vectors of the matrix.

$$\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$
Answer:

$$\begin{bmatrix} 4 & 2 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 & 3 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 & 3 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 & 3 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 & 3 & 2 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 & 3 & 2 \\ 1 & 3 & 1 \\ 1 & 3 & 1 \\ 1 & 3 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 & 3 & 2 \\ 1 & 2 & 1 \\ 1 & 3$$

b. Solve the differential equation
$$(1+x)^2 \frac{d^2y}{dx^2} + (1+x) \frac{dy}{dx} + y = 4\cos\{\log(1+x)\}$$
 (8)
Answer:

J is a degenifie's linear equa.

Put $Hx = c^4$ of $t = log(1+x)$ is the first $(1+x)^{\frac{1}{2}} = \frac{1}{2} + \frac{1}{$

b. Apply Euler's method to solve for y at x = 0.1 from
$$\frac{dy}{dx} = x + y + xy, y(0) = 1$$

taking size h = 0.025 (8)
Answer:
by EUleu's Weltwell
 $\int_{M} = \int_{M-1} + W_{-1} (M_{0} + m-1) h_{+} (M_{0} + m-$

$$\int_{a}^{b} \int_{a}^{b} dere \ \chi = 0 \ is definitions of point be cause $P_{d}(i) \neq 0$, therefore, let

$$\int_{a}^{c} \int_{a}^{b} dere \ \chi = 0 \ is definitions of point be cause $P_{d}(i) \neq 0$, therefore, let

$$\int_{a}^{d} = 0 \ is definitions \int_{a}^{a} f_{a}^{a} f_{a}^{a} f_{a}^{b} f$$$$$$

Q.8 a. Prove that
$$\int_{-1}^{1} P_{m}(n)P_{n}(n)dx = \begin{cases} 0, & m \neq n \\ \frac{2}{2n+1}, & m = n \end{cases}$$
 (4+4)
Answer:
Muse Kun one-Jakash $P_{m}(n)$ and $P_{n}(n)$ are Set distant of
 $(1-n^{2})$ but $m(m+1)dt = 0$ (c)
 $m_{n}(n) = 0$ $m_{n}(n) = 0$ but $m(m+1)dt = 0$ (c)
 $m_{n}(n) = 0$ $m_{n}(n) = 0$ but $m(m+1)dt = 0$ (c)
 $m_{n}(n) = 0$ $m_{n}(n) = 0$ but $m(m+1)dt = 0$ (c)
 $m_{n}(n) = 0$ $m_{n}(n) =$

b. Prove that

$$J_{4}(n) = \left(\frac{48}{x^{2}} - \frac{8}{x}\right)J_{1}(n) + \left(1 - \frac{24}{x^{2}}\right)J_{0}(n) \quad (8)$$
Answer:
Not know from deconstruct formula, $J_{2n} = \frac{x}{2\pi}(J_{n-1} + J_{n+1}) \quad (0)$
 $f_{2n} = \frac{1}{2\pi}J_{n-1}J_{n-1} \quad J_{2n} = \frac{2\pi}{2\pi}J_{n-1}J_{n-1}J_{n-1} \quad J_{2n} = \frac{2\pi}{2\pi}J_{n-1}J_{n-1}J_{n-1} \quad J_{2n} = \frac{2\pi}{2\pi}J_{n-1}J_{$

Answer:

21 wer family of circles is noig = 2ax - th Deff. Wester, eliminalong'a, weget $2ny \frac{dws}{dn} = y^2 - x^2 - 1iii$ is toil egh of dothogonal system is (Ropener our by - the), - Iny du = J-r or dy = Iny Tosolue this homegeneourseque, put J=ven, indy = vernedie $\frac{1-b^2}{dt} = \frac{2b}{1-b^2} \text{ or } \frac{1-b^2}{dt} = \frac{b+b^3}{1-b^2} \text{ or } \frac{1-b^2}{2} db = \frac{db}{2}$ $\begin{aligned} \frac{\partial hegod hup}{\partial x} & \int \frac{1-b^2}{b(1+b^2)} db = logn+c \quad or \quad \int \left[\frac{1}{b^2} - \frac{2b^2}{Hb^2}\right] db = logn+c \\ or \quad log b - log (1+b^2) - log h = c \quad or \quad \frac{10}{(1+b^2)h} = const \\ Hence herd - Sal h \quad \frac{5}{2t} \quad \frac{1}{(1+b^2)h} = const. \ or \ ky = (m^2+y^2) \\ \hline m \end{pmatrix} \\ & = m (m^2+b^2) \\ \hline m = m (m^2+b^2)$ Q.9 (For New Scheme students i.e. AE101/AC101/AT101) a. Find a Fourier Series to represent x^2 in the interval $(-\ell, \ell)$ (8) Answer: $f(x) = x^2$ is an even function in (-l, l) $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{p},$ $a_0 = \frac{2}{\rho} \int_0^1 x^2 dx = 2l^2$ an = It x cos mix da $= 4l^{2}(-1)^{m}$ $x^{2} = \frac{l^{2}}{3} - \frac{4l^{2}}{72} \left(\frac{c_{3} \pi x}{l} - \frac{c_{3} 2\pi x l}{2^{2}} + \frac{c_{3} 3\pi x l}{3^{2}} \right)$

b. Find the Fourier Cosine transform of e^{-x^2} . (8) Answer:) = lo e Cossidn le xe sinsxdx $= -S \int_{0}^{\infty} e^{-x^{2}} Gssx dx$ ds - 7 log Cossida - $\int_{e}^{\infty} - x dx =$ let S=0

TEXT BOOKS

- 1. Higher Engineering Mathematics, Dr. B.S.Grewal, 40th edition 2007, Khanna publishers, Delhi
- 2. Text book of Engineering Mathematics, N.P. Bali and Manish Goyal, 7th Edition 2007, Laxmi Publication (P) Ltd