
AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 1

 Q.2 a. Define System Calls. Explain with the help of Example System Calls. (8)

Answer:

A system call is how a program requests a service from an operating

system's kernel. This may include hardware related services (e.g. accessing the

hard disk), creating and executing new processes, and communicating with

integral kernel services (like scheduling). System calls provide an essential

interface between a process and the operating system.

systems provide a library or API that sits between normal programs and the

operating system. On Unix-like systems, that API is usually part of an

implementation of the C library (libc), such as glibc, that provides wrapper

functions for the system calls, often named the same as the system calls that

they call. On Windows NT, that API is part of the Native API, in the ntdll.dll library;

this is an undocumented API used by implementations of the regular Windows

API and directly used by some system programs on Windows. The library's

wrapper functions expose an ordinary function calling

convention (a subroutine call on the assembly level) for using the system call, as

well as making the system call more modular. Here, the primary function of the

wrapper is to place all the arguments to be passed to the system call in the

appropriate processor registers (and maybe on the call stack as well), and also

setting a unique system call number for the kernel to call. In this way the library,

which exists between the OS and the application, increases portability.

On Unix, Unix-like and other POSIX-compliant operating systems, popular

system calls are open, read, write, close, wait,execve, fork, exit, and kill. Many of

today's operating systems have hundreds of system calls. For

example, Linux andOpenBSD each have over 300 different calls,[1][2] NetBSD has

close to 500,[3] FreeBSD has over 500,[4] while Plan 9 has 51.[5]

Tools such as strace and truss allow a process to execute from start and report

all system calls the process invokes, or can attach to an already running process

and intercept any system call made by said process if the operation does not

violate the permissions of the user. This special ability of the program is usually

also implemented with a system call, e.g. strace is implemented with ptrace or

system calls on files in procfs.

http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Kernel_(computing)
http://en.wikipedia.org/wiki/Library_(computing)
http://en.wikipedia.org/wiki/API
http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/C_standard_library
http://en.wikipedia.org/wiki/Glibc
http://en.wikipedia.org/wiki/Wrapper_function
http://en.wikipedia.org/wiki/Wrapper_function
http://en.wikipedia.org/wiki/Wrapper_function
http://en.wikipedia.org/wiki/Windows_NT
http://en.wikipedia.org/wiki/Native_API
http://en.wikipedia.org/wiki/Windows_API
http://en.wikipedia.org/wiki/Windows_API
http://en.wikipedia.org/wiki/Windows_API
http://en.wikipedia.org/wiki/Calling_convention
http://en.wikipedia.org/wiki/Calling_convention
http://en.wikipedia.org/wiki/Calling_convention
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Modularity
http://en.wikipedia.org/wiki/Processor_register
http://en.wikipedia.org/wiki/Call_stack
http://en.wikipedia.org/wiki/Software_portability
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/POSIX
http://en.wikipedia.org/wiki/Open_(system_call)
http://en.wikipedia.org/wiki/Read_(system_call)
http://en.wikipedia.org/wiki/Write_(system_call)
http://en.wikipedia.org/wiki/Close_(system_call)
http://en.wikipedia.org/wiki/Wait_(system_call)
http://en.wikipedia.org/wiki/Exec_(operating_system)
http://en.wikipedia.org/wiki/Fork_(operating_system)
http://en.wikipedia.org/wiki/Exit_(operating_system)
http://en.wikipedia.org/wiki/Kill_(Unix)
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/OpenBSD
http://en.wikipedia.org/wiki/System_call#cite_note-1
http://en.wikipedia.org/wiki/System_call#cite_note-1
http://en.wikipedia.org/wiki/System_call#cite_note-1
http://en.wikipedia.org/wiki/NetBSD
http://en.wikipedia.org/wiki/System_call#cite_note-3
http://en.wikipedia.org/wiki/FreeBSD
http://en.wikipedia.org/wiki/System_call#cite_note-4
http://en.wikipedia.org/wiki/Plan_9_from_Bell_Labs
http://en.wikipedia.org/wiki/System_call#cite_note-5
http://en.wikipedia.org/wiki/Strace
http://en.wikipedia.org/wiki/Truss_(Unix)
http://en.wikipedia.org/wiki/Ptrace
http://en.wikipedia.org/wiki/Procfs

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 2

 b. Explain with the help of example the following functions: (8)

 (i) open function

 (ii) cat function

 (iii) close function

 (iv) lseek function

 (v) read function

Answer:

1. open function
Ans. The open() system call is used to convert a pathname into a file descriptor
(a small, non-negative integer for use in subsequent I/O as with read, write,
etc.). When the call is successful, the file descriptor returned will be the lowest
file descriptor not currently open for the process. This call creates a new open
file, not shared with any other process. (But shared open files may arise via
the fork(2) system call.) The new file descriptor is set to remain open across
exec functions (see fcntl(2)). The file offset is set to the beginning of the file.

#include <sys/types.h>

int open(const char *pathname, int flags);

2. cat function

http://linux.about.com/library/cmd/blcmdl2_fork.htm
http://linux.about.com/library/cmd/blcmdl2_fcntl.htm

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 3

This is one of the most flexible Unix commands. We can use to create, view and
concatenate files. For our first example we create a three-item English-Spanish
dictionary in a file called "dict."

 % cat >dict
 red rojo
 green verde
 blue azul
<control-D>
 %

3. close function

close() closes a file descriptor, so that it no longer refers to any file and may be
reused. Any record locks (see fcntl(2)) held on the file it was associated with,
and owned by the process, are removed (regardless of the file descriptor that
was used to obtain the lock).

If fd is the last copy of a particular file descriptor the resources associated with it
are freed; if the descriptor was the last reference to a file which has been
removed using unlink(2) the file is deleted.

RETURN VALUE

close() returns zero on success. On error, -1 is returned, and errno is set
appropriately.

4. lseek function

The lseek() function repositions the offset of the open file associated with the file
descriptorfildes to the argument offset according to the directive whence as
follows:

Tag Description

SEEK_SET

 The offset is set to offset bytes.

SEEK_CUR

 The offset is set to its current location plus offset bytes.

SEEK_END

 The offset is set to the size of the file plus offset bytes.

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 4

The lseek() function allows the file offset to be set beyond the end of the file (but
this does not change the size of the file). If data is later written at this point,
subsequent reads of the data in the gap (a "hole") return null bytes (’\0’) until data
is actually written into the gap.

RETURN VALUE
Upon successful completion, lseek() returns the resulting offset location as
measured in bytes from the beginning of the file. Otherwise, a value of (off_t)-1 is
returned and errno is set to indicate the error.
5. read function

 Q.3 a. How will you set permissions for a file? (8)

Answer:

Files and directories in Unix may have three types of permissions: read (`r'), write
(`w'), and execute (`x'). Each permission may be `on' or `off' for each of three
categories of users: the file or directory owner; other people in the same group as
the owner; and all others.

Files
To determine the mode (or permission settings) of a particular file, use the
command `ls -lg filename'. This command will produce a message similar to the
following:

-rwxr-x--x 1 owner group 2300 Jul 14 14:38 filename

The string of 10 characters on the left shows the mode. The initial character ('-' in
this case) indicates what type of file it is. A '-' indicates that the file is a plain file.
The character 'd' means it is a directory. Characters 2-4 are, respectively, `r', `w',
or `x' if the corresponding permission is turned on for the owner or `-' if the
permission is turned off. Characters 5-7 similarly show the permissions for the
group; characters 8-10 for all others. The second string shows the number of
links that exist to the file. The third string identifies the owner of the file and the
fourth string tells what group the owner of the file is in.

To change the mode of a file, use the chmod command. The general form is

 chmod X@Y file1 file2 ...
where: X is any combination of the letters `u' (for owner), `g' (for group), `o' (for
others), `a' (for all; that is, for `ugo'); @ is either `+' to add permissions, `-' to
remove permissions, or `=' to assign permissions absolutely; and Y is any
combination of `r', `w', `x'. Following are some examples:

 chmod u=rx file (Give the owner rx permissions, not w)
 chmod go-rwx file (Deny rwx permission for group, others)
 chmod g+w file (Give write permission to the group)
 chmod a+x file1 file2 (Give execute permission to everybody)
 chmod g+rx,o+x file (OK to combine like this with a comma)
Directories

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 5

The permission scheme described above also applies to directories. For a
directory, whoever has `read' permission can list files using the ls command (and
thus discover what files are there); whoever has `write' permission can create
and delete files in that directory; whoever has execute permission can access a
file or subdirectory of known name. To find out the mode of a directory:

 b. What are links and symbolic links in UNIX file system? (8)

Answer:

A link is a pointer or reference to another file. A directory in UNIX has a list of file

names and their corresponding inodes. A directory entry can have an Inode

pointing to another file.

This is a hard link. When a hard link is made, then the i-numbers of two different

directory file entries point to the same inode.

A symbolic link or a soft link is a special type of file containing links or references

to another file or directory in the form of a path. The path may be relative or

absolute. To create a symbolic link, following command is used:

Ln –s target link_name

Here, target is the path and link_name is the name of the link. Symbolic links can

be created to create a file system based on different views of the user.

Link is a utility program in UNIX which establishes a hard link from one directory

to another directory. A hard link is a reference to a directory or to file on storage

media. A symbolic link is a type of file. It contains references to another file

directory in the form of absolute or a relative path.

 Q.4 a. What are Streams? Explain the Standard Input, Output and Error

and Buffering in Standard IO Library. (8)

Answer:

The standard I/O package provides a wide variety of functions to perform input,
output, and associated tasks. It includes both standard functions and augmented
functions to support 370-oriented features.

In general, a program that uses standard I/O accesses a file in the following
steps:

1. Open the file using the standard function fopen or the augmented
function afopen . This establishes a connection between the program and
the external file. The name of the file to open is passed as an argument
to fopen or afopen . The fopen and afopen functions return a pointer to an
object of type FILE . (This type is defined in the header file <stdio.h> , which
should be included with a#include statement by any program that uses
standard I/O.) The data addressed by this FILE pointer are used to control
all further program access to the file.

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 6

2. Transfer data to and from the file using any of the functions listed in this
section. The FILE pointer returned by fopen is passed to the other functions
to identify the file to be processed.

3. Close the file. After the file is closed, all changes have been written to the
file and the FILE pointer is no longer valid. When a program terminates
(except as the result of an ABEND), all files that have not been closed by
the program are closed automatically by the library.

For convenience, three standard files are opened before program execution,
accessible with the FILE pointers stdin , stdout , and stderr . These identify the
standard input stream, standard output stream, and standard error stream,
respectively. For TSO or CMS programs, these FILE objects normally identify the
terminal, but they can be redirected to other files by use of command-line
options. For programs running under the USS shell, these FILE objects reference
the standard files for the program that invoked them. More information on the
standard streams is available later in this section.

Standard I/O functions may be grouped into several categories. The functions in
each category and their purposes are listed in Standard I/O Functions.

Standard I/O Functions

Function Purpose

Control Functions control basic access to files

 fopen+ opens a file

 afopen*+ opens a file with system-dependent options

 freopen+ reopens a file

 afreopen*+ reopens a file with system-dependent options

 tmpfile creates and opens a temporary file

 tmpnam generates a unique filename

 fflush writes any buffered output data

 afflush+ forces any buffered output data to be written
immediately

 fclose+ closes a file

 setbuf+ changes stream buffering

 setvbuf+ changes stream buffering

Character I/O Functions read or write single characters

http://support.sas.com/documentation/onlinedoc/sasc/doc700/html/lr1/zechsums.htm#z2005101

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 7

 fgetc reads a character

 getc reads a character (macro version)

 ungetc pushes back a previously read character

 getchar reads a character from stdin

 fputc writes a character

 putc writes a character (macro version)

 putchar writes a character to stdout

String I/O Functions read or write character strings

 fgets reads a line into a string

 gets reads a line from stdin into a string

 fputs writes a string

 puts writes a line to stdout

Array I/O Functions read or write arrays or objects of any data type

 fread reads on or more data elements

 fwrite writes one or more data elements

Record I/O Functions read or write entire funtions

 afread* reads a record

 afread0* reads a record (possibly length 0)

In Standard I/O Functions,

 Functions marked with a *are not defined in the ANSI standard. Programs
that use them should include lcio.h rather than stdio.h .

 Functions marked with a +may be used with files opened for keyed
access.

UNIX Style I/O Overview
The UNIX style I/O package is designed to be compatible with UNIX low-level
I/O, as described in previous sections. When you use UNIX style I/O, your
program still performs the same three steps (open, access, and close) as those
performed for standard I/O, but there are some important distinctions.

http://support.sas.com/documentation/onlinedoc/sasc/doc700/html/lr1/zechsums.htm#z2005101

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 8

 To open a file using UNIX style I/O, you call open or aopen . (aopen is not
compatible with UNIX operating systems but permits the program to
specify 370-dependent file processing options.) The name of the file to
open is passed as an argument to open or aopen .

 open and aopen return an integer called the file number (sometimes file
descriptor). The file number is passed to the other UNIX style functions to
identify the file. It indexes a table containing information used to access all
files accessed with UNIX style I/O. Be sure to use the right kind of object
to identify a file: a FILE pointer with standard I/O, but an integer file number
with UNIX style I/O.

By convention, UNIX assigns the file numbers 0, 1, and 2 to the standard input,
output, and error streams. Some programs use UNIX style I/O with these file
numbers in place of standard I/O to stdin ,stdout , and stderr , but this practice is
nonportable. The library attempts to honor this kind of usage in simple cases, but
for the best results the use of standard I/O is recommended.

UNIX style I/O offers fewer functions than standard I/O. No formatted I/O
functions or error-handling functions are provided. In general, programs that
require elaborately formatted output or control of error processing should, where
possible, use standard I/O rather than UNIX style I/O. Some UNIX style I/O
functions, such as fcntl and ftruncate are supported only for files in the USS
hierarchical file system.

The functions supported by UNIX style I/O and their purposes are listed in UNIX
Style I/O Functions. Note that the aopen function is not defined by UNIX operating
systems. Also note that some POSIX-defined functions, such as ftruncate , are
not implemented by all versions of UNIX.

each form, valid abbreviations are given. (None of these forms can be used with
the xed style.)

Alternate Forms Abbreviations

TERMINAL TERM,*

READER RDR

PRINTER PRT

PUNCH PUN, PCH

%MACLIB (member member-
name)

%MACLIB (member-
name)

TXTLIB (member member-name) %TXTLIB (member-
name)

Standard I/O and UNIX Style I/O Open Modes

http://support.sas.com/documentation/onlinedoc/sasc/doc700/html/lr1/zechsums.htm#z2005103
http://support.sas.com/documentation/onlinedoc/sasc/doc700/html/lr1/zechsums.htm#z2005103
http://support.sas.com/documentation/onlinedoc/sasc/doc700/html/lr1/zechsums.htm#z2005103

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 9

Standard form UNIX style form

 'r' O_RDONLY | O_TEXT

 'rb' O_RDONLY

 'r+' O_RDWR | O_TEXT

 'r+b' O_RDWR

 'w' O_WRONLY | O_CREAT | O_TRUNC | O_TEXT

 'wb' O_WRONLY | O_CREAT | O_TRUNC

 'w+' O_RDWR | O_CREAT | O_TRUNC | O_TEXT

 'w+b' O_RDWR | O_CREAT | O_TRUNC

 'a' O_WRONLY | O_APPEND | O_CREAT | O_TEXT

 'ab' O_WRONLY | O_APPEND | O_CREAT

 'a+' O_RDWR | O_APPEND | O_CREAT | O_TEXT

 'a+b' O_RDWR | O_APPEND | O_CREAT

Library access method selection

When you use afopen or afreopen to open a file, you can specify the library access
method to be used. If you use some other open routine, or specify the null string
as the access method name, the library selects the most appropriate access
method for you. If you specify an access method that is incompatible with the
attributes of the file being opened, the open fails, and a diagnostic message is
produced. Six possible access method specifications are available:

 A null ("") access method name allows the library to select an access
method.

 The "term" access method applies only to terminal files.
 The "seq" access method is primarily oriented towards sequential access.

("seq" may also be specified for terminal files, in which case,
the "term" access method is automatically substituted.)

 The "rel" access method is primarily oriented toward access by relative
character number. The "rel" access method can be used only when the
open mode specifies binary access. Additionally, the external file must
have appropriate attributes, as discussed in 370 Perspectives on SAS/C
Library I/O.

 The "kvs" access method provides keyed access to VSAM files.

http://support.sas.com/documentation/onlinedoc/sasc/doc700/html/lr1/zhbkgrnd.htm#zectives
http://support.sas.com/documentation/onlinedoc/sasc/doc700/html/lr1/zhbkgrnd.htm#zectives
http://support.sas.com/documentation/onlinedoc/sasc/doc700/html/lr1/zhbkgrnd.htm#zectives

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 10

 The "fd" access method provides access to USS hierarchical file system
files.

When no specific access method is requested by the program, the library selects
an access method as follows:

 "term" for a TSO or CMS terminal file
 "kvs" if the open mode specifies keyed access
 "fd" for a hierachical file system file
 "rel" if the open mode includes binary access and the file has suitable

attributes
 "seq" otherwise.

Terminal Options

 eof=string
end-of-file string

 prompt=string
terminal input prompt

VSAM Performance Options

 bufnd=nnn
number of data I/O buffers VSAM is to use

 bufni=nnn
number of index I/O buffers VSAM is to use

 bufsp=nnn
maximum number of bytes of storage to be used by VSAM for file data
and index I/O buffers

 bufsize=nnn
size, in bytes, of a DIV window for a linear data set

 bufmax=n
number of DIV windows for a linear data set

See Terminal I/O for a discussion of the eof and prompt amparms. See VSAM-
related amparms for a discussion of the VSAM Performance amparms.

The default amparms vary greatly between OS/390 and CMS, so they are
described separately for each system.

File characteristics amparms The recfm , reclen , blksize , keylen , keyoff ,
and org keywords specify the program's expectations for record format, maximum
r

You can use the xed style even when XEDIT is not active. In this case, or when
the file requested is not in the XEDIT ring, the file is read from disk.

Table: Printf/scanf format characters

Format Spec (%) Type Result

http://support.sas.com/documentation/onlinedoc/sasc/doc700/html/lr1/zechsums.htm#zminalio
http://support.sas.com/documentation/onlinedoc/sasc/doc700/html/lr1/zechsums.htm#zamparms
http://support.sas.com/documentation/onlinedoc/sasc/doc700/html/lr1/zechsums.htm#zamparms

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 11

c char single character

i,d int decimal number

o int octal number

x,X int hexadecimal number

 lower/uppercase notation

u int unsigned int

s char * print string

terminated by 0

f double/float format -m.ddd...

e,E " Scientific Format

 -1.23e002

g,G " e or f whichever

 is most compact

% - print % character

 b. Write short notes on the following terms: (8)

 (i) Binary I/O

 (ii) Formatted I/O

Answer:

 Q.5 a. Explain Kill and Raise functions with the help of examples. (8)

Answer:

Advanced Programming in UNIX by W. Richard, Sec. 10.9 (Page No. 311 – 313)

 b. Describe sigaction function with the help of example. (8)

Answer:

Advanced Programming in UNIX by W. Richard, Sec. 10.14 (Page No. 324 – 328)

 Q.6 a. What does fork() do? What is the difference between fork() and

vfork()? (8)

Answer:

Fork : The fork call basically makes a duplicate of the current process, identical in

almost every way (not everything is copied over, for example, resource limits in

some implementations but the idea is to create as close a copy as possible).

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 12

The new process (child) gets a different process ID (PID) and has the the PID of

the old process (parent) as its parent PID (PPID). Because the two processes

are now running exactly the same code, they can tell which is which by the return

code of fork - the child gets 0, the parent gets the PID of the child. This is all, of

course, assuming the fork call works - if not, no child is created and the parent

gets an error code.

Vfork : The basic difference between vfork and fork is that when a new process is

created with vfork(), the parent process is temporarily suspended, and the child

process might borrow the parent's address space. This strange state of affairs

continues until the child process either exits, or calls execve(), at which point the

parent process continues.

This means that the child process of a vfork() must be careful to avoid

unexpectedly modifying variables of the parent process. In particular, the child

process must not return from the function containing the vfork() call, and it must

not call exit() (if it needs to exit, it should use _exit(); actually, this is also true for

the child of a normal fork()).

 b. Difference between wait and waitpid. (4)

Answer:

The system calls wait() and waitpid() are used to synchronize a parent process with
the termination of its child processes. The parent blocks until a child process
dies. The difference is that wait() waits for the termination of any child process
while waitpid() allows to specify the child process by its PID. The wait system call
has some closely related variants, wait3() and wait4() which allow to gather more
information about the process and its termination and to supply options for the
waiting.

wait() allows a process to wait until one of its child processes change its state,

exists for example. If waitpid() is called with a process id it waits for

that specific child process to change its state, if apid is not specified, then it's

equivalent to calling wait() and it waits for any child process to change its state.

The wait() function returns child pid on success, so when it's is called in a loop like

this:

while(wait(NULL)>0)

It means wait until all child processes exit (or change state) and no more child

processes are unwaited-for (or until an error occurs)

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 13

 c. Explain the term Process Accounting. (4)

Answer:

Unix Process Accounting is a tool that literally takes account of every single

process on your server, recording how much CPU (processor) and memory

(RAM) each process consumes. When summarized, this information can be very

useful for tracking down overzealous processes and hogs of resources so that

you may restore your server to it's rightful speed and performance!

DreamHost keeps a daily accounting of your processes, which can be found in

/var/log/sa/. For example, /var/log/sa/sa.itemized.0 is an itemized report of all the

processes run from yesterday, sa.itemized.1 is the itemized report for the day

before yesterday, sa.itemized.2 is the itemized report for two days before

yesterday. Along those same lines is sa.summary.0, which is a summary of each

user's consumption of resources.

Note: most web server users can only access files within their

/home/username directory. VPS or dedicated servers can have admin

users who can use sudo to access logs in /var/logs.

You may have the daily reports of your processes in your home directory, in

the logs/resources/ directory, by enabling CPU reporting for the user.

See Where can I find resource reports?for more information.

What does all of this mean? The best way to use this information is to

examine the CPU-minutes. A CPU-minute can be considered a unit of work

for a server. No, CPU-minutes are not "real time", that is, there are not

60minutesX24hours=1440 CPU-minutes in a day. If a machine is idle, doing

nothing at all, that doesn't count towards CPU time. Only when the processor

is actually doing something does it count as CPU-minutes.

So knowing how many CPU-minutes per day your users and processes are

consuming can help you to find the user or process which is causing

problems for the entire machine. The best way to understand all of this is to

breeze through the examples below, and then try it out on your own machine.

 Q.7 a. What are Command line Arguments? (4)

Answer:

http://wiki.dreamhost.com/CPU_Minutes_FAQ#Where_can_I_find_resource_reports.3F

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 14

The command-line arguments $1, $2, $3,...$9 are positional parameters, with $0
pointing to the actual command, program, shell script, or function and $1, $2, $3,
...$9 as the arguments to the command.

Following script uses various special variables related to command line:

#!/bin/sh

echo "File Name: $0"
echo "First Parameter : $1"
echo "First Parameter : $2"
echo "Quoted Values: $@"
echo "Quoted Values: $*"
echo "Total Number of Parameters : $#"

Many Unix commands allow command line arguments, that is, additional words
or phrases that follow the name of the command and give more information
about what to do.

For example, the man command will give you information about any Unix
command. To get information about the date command, for example, you can
type:

 yourname@yourcomputer<21>% man date

A command can have any number of arguments. For example, the cat command
concatenates any number of files. Suppose you want to display the contents of
three files named names, dates, andaddresses on your display screen. This
command would do it:

 yourname@yourcomputer<22>% cat names dates addresses

 b. How to set Environment Variables? (4)

Answer:

Environment variables defined in this chapter affect the operation of multiple
utilities, functions, and applications. There are other environment variables that
are of interest only to specific utilities. Environment variables that apply to a
single utility only are defined as part of the utility description. See the
ENVIRONMENT VARIABLES section of the utility descriptions in the Shell and
Utilities volume of IEEE Std 1003.1-2001 for information on environment variable
usage.

The value of an environment variable is a string of characters. For a C-language
program, an array of strings called the environment shall be made available
when a process begins. The array is pointed to by the external variable environ,
which is defined as:

extern char **environ;

These strings have the form name=value; names shall not contain the
character '='. For values to be portable across systems conforming to

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 15

IEEE Std 1003.1-2001, the value shall be composed of characters from the
portable character set (except NUL and as indicated below). There is no meaning
associated with the order of strings in the environment. If more than one string in
a process' environment has the same name, the consequences are undefined.

 c. Difference between getrlimit and setrlimit functions. (8)

Answer:

Every process has a set of resource limits, some of which can be queried and
changed by the geTRlimit and setrlimit functions.

[View full width]
 #include <sys/resource.h>

 int getrlimit(int resource, struct rlimit *rlptr);

 int setrlimit(int resource, const struct rlimit

 *rlptr);

Both return: 0 if OK, nonzero on error

These two functions are defined as XSI extensions in the Single UNIX
Specification. The resource limits for a process are normally established by
process 0 when the system is initialized and then inherited by each successive
process. Each implementation has its own way of tuning the various limits.

Each call to these two functions specifies a single resource and a pointer to the
following structure:

 struct rlimit {
 rlim_t rlim_cur; /* soft limit: current limit */
 rlim_t rlim_max; /* hard limit: maximum value for rlim_cur */
 };

Three rules govern the changing of the resource limits.

1. A process can change its soft limit to a value less than or equal to its hard
limit.

2. A process can lower its hard limit to a value greater than or equal to its
soft limit. This lowering of the hard limit is irreversible for normal users.

3. Only a superuser process can raise a hard limit.

http://infohost.nmt.edu/~eweiss/222_book/222_book/0201433079/ch07lev1sec11.html#PLID0

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 16

An infinite limit is specified by the constant RLIM_INFINITY.

 Q.8 a. How to get and set the attributes of Terminal? (8)

Answer:

ll of the attributes that can be controlled in the terminal device are contained in
the termios structure. This structure is defined as:

 struct termios {
 tcflag_t c_iflag; /* input flags */
 tcflag_t c_oflag; /* output flags */
 tcflag_t c_cflag; /* control flags */
 tcflag_t c_lflag; /* local flags */
 cc_t c_cc[NCCS]; /* control characters */
 };
The c_iglag attribute is what controls any input characteristics of the terminal (map
CR to NL, ring bell on input queue full, etc.). The c_oflag attribute is what you set
to control any output processing of the terminal (expand tabs to spaces, map
lowercase to uppercase on output, etc.). Most of the c_oflag settings are not Posix
compliant. The c_cflag attribute is for setting the serial line attributes (enable
parity, set flow control, etc.). The c_lflag attribute is for the settigns of the interface
between the user and the device driver (local echo, enable signals generated byt
the terminal, etc.).
This structure is used with two different functions, tcgetattr() and tcsetattr(). The
prototypes are as follows:

 #include <termios.h>

 int tcgetattr(int filedes, struct termios *termptr);

 int tcsetattr(int filedes, int opt, const struct termios *termptr);

Both return: 0 if OK, -1 on error

As the names suggest, tcgetattr() gets the current state of the terminal that the
open file descriptor filedes points to, and tcsetattr() sets attributes for the terminal
that filedes is associated with. These functions will return an error if
the filedes argument is not associated with a terminal device.

The argument opt in tcsetattr() is for specifying when the changes are to take
place. This is defined by the following macros:

TCSANOW Make the changes now.

TCSADRAIN Make the changes after all output has been transmitted from
the buffer. This should be used when setting output
attributes.

TCSAFLUSH Make the changes after all output has been transmitted, and
flush the input queue of any unprocessed data.

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 17

How fast are we talking?
Sometimes you may find that you need to change the speed of the terminal
dsession to match that of the device it is connected to. This is done with four
functions in combination with the tcgetattr() andtcsetattr() functions.

 #include <termios.h>

 speed_t cfgetispeed(const struct termios *termptr);

 speed_t cfgetospeed(const struct termios *termptr);
Both return: baud rate value

 speed_t cfsetispeed(struct termios *termptr, speed_t speed);

 speed_t cfsetospeed(struct termios *termptr, speed_t speed);
Both return: 0 if OK, -1 on error

The first thing that must be done here in order to change the baud rate of the
terminal is use tcgetattr() so that you can pass the termios struct to the cfset
functions. You then pass the struct to the cfset functions to set the correct baud
rate in the termios struct. This does not actually set the terminal speed, however.
You still need to make a call to tcsetattr() with termios struct that has the changed
baud rate.

The order of calls to change the baud rate:

1. tcgetattr() -- Get the current settings
2. cfsetispeed() -- Set the input speed in the termios struct
3. cfsetospeed() -- Set the output speed in the termios struct
4. cfsetattr() -- Make the changes to the terminal to reflect the changed struct

Terminal line control
The line control for the terminal is important if you want to prevent overflowing
the buffer for the device when there is no hardware flow control implemented.
Also, you can flush the input and/or output of a device discarding any data that
has not already been sent or read from the buffer.

 #include <termios.h>

 int tcdrain(int filedes);

 int tcflow(int filedes, int action);

 int tcflush(int filedes, int queue);

 int tcsendbreak(int filedes, int duration);
All four return: 0 if OK, -1 on error

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 18

The tcdrain() function suspends the process until all of the data in the ouput buffer
has been transmitted. The tcflow() function gives control over input and output flow
control. The action argument totcflow() can be any of the following macros:

TCOOFF Suspend Output

TCOON Restart output

TCIOFF Suspend input

TCION Restart input

The tcflush() function lets us discard input or output buffer data. Data in the input
buffer is data that has been received but not read yet. Data in the output buffer is
data that has been written but not transmitted yet. The queue argument can have
the follow macro values:

TCIFLUSH Flush the input buffer

TCOFLUSH Flush the output buffer

TCIOFLUSH Flush both the input and output buffers

The tcsendbreak() function transmits a continous stream of zero bits. If
the duration attribute is set to 0, then the duration of the transmition is between
0.25 and 0.5 seconds. If the duration is nonzero, it is implementation specific.
Under Linux, if the duration is nonzero, the length of transmission
is duration*N seconds where N is between 0.25 and 0.5.

 b. Explain in detail Client Server Model. (8)

Answer:

Client Process:

This is the process which typically makes a request for information. After getting
the response this process may terminate or may do some other processing.

For example: Internet Browser works as a client application which sends a
request to Web Server to get one HTML web page.

Server Process:

This is the process which takes a request from the clients. After getting a request
from the client, this process will do required processing and will gather requested
information and will send it to the requestor client. Once done, it becomes ready
to serve another client. Server process are always alert and ready to serve
incoming requests.

For example: Web Server keeps waiting for requests from Internet Browsers
and as soon as it gets any request from a browser, it picks up a requested HTML
page and sends it back to that Browser.

Notice that the client needs to know of the existence and the address of the
server, but the server does not need to know the address or even the existence

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 19

of the client prior to the connection being established. Once a connection is
established, both sides can send and receive information.

2-tier and 3-tier architectures:
There are two types of client server architectures:

 2-tier architectures: In this architecture, client directly interact with the
server. This type of architecture may have some security holes and
performance problems. Internet Explorer and Web Server works on two
tier architecture. Here security problems are resolved using Secure Socket
Layer(SSL).

 3-tier architectures: In this architecture, one more software sits in
between client and server. This middle software is called middleware.
Middleware are used to perform all the security checks and load balancing
in case of heavy load. A middleware takes all requests from the client and
after doing required authentication it passes that request to the server.
Then server does required processing and sends response back to the
middleware and finally middleware passes this response back to the
client. If you want to implement a 3-tier architecture then you can keep any
middle ware like Web Logic or WebSphere software in between your Web
Server and Web Browsers.

Types of Server:
There are two types of servers you can have:

 Iterative Server: This is the simplest form of server where a server
process serves one client and after completing first request then it takes
request from another client. Meanwhile another client keeps waiting.

 Concurrent Servers: This type of server runs multiple concurrent
processes to serve many request at a time. Because one process may
take longer and another client can not wait for so long. The simplest way
to write a concurrent server under Unix is to fork a child process to handle
each client separately.

How to make client:
The system calls for establishing a connection are somewhat different for the
client and the server, but both involve the basic construct of a socket. The two
processes each establish their own sockets.

The steps involved in establishing a socket on the client side are as follows:

1. Create a socket with the socket() system call.
2. Connect the socket to the address of the server using

the connect() system call.
3. Send and receive data. There are a number of ways to do this, but the

simplest is to use the read() and write() system calls.

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 20

How to make a server:
The steps involved in establishing a socket on the server side are as follows:

1. Create a socket with the socket() system call.
2. Bind the socket to an address using the bind() system call. For a server

socket on the Internet, an address consists of a port number on the host
machine.

3. Listen for connections with the listen() system call.
4. Accept a connection with the accept() system call. This call typically

blocks until a client connects with the server.
5. Send and receive data using the read() and write() system calls.

Client and Server Interaction:
Following is the diagram showing complete Client and Server interaction:

 Q.9 a. Define Pipes. What are popen and pclose functions in Interprocess

communication? (8)

Answer:

The shell arranges the standard input and output of the two commands, so that:

The shell has reconnected the standard input and output streams so that data
flows from the keyboard input through the two commands and is then output to
the screen.

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 21

Process Pipes

Perhaps the simplest way of passing data between two programs is with
the popen and pclose functions. These have the prototypes:

popen

The popen function allows a program to invoke another program as a new
process and either pass data to or receive data from it.

pclose

When the process started with popen has finished, we can close the file stream
associated with it using pclose.

Try It Out - Using popen and pclose

Having initialized the program, we open the pipe to uname, making it readable
and setting read_fp to point to the output.

At the end, the pipe pointed to by read_fp is closed

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 22

When we run this program on one of the author's machine, we get:

How It Works

The program uses the popen call to invoke the uname command. It read some
information and prints it to the screen.

Sending Output to popen

Here's a program, popen2.c, that pipes dta to another. Here, we use
the od (octal dump).

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 23

How It Works

The progran uses popen with an r parameter, so it continues reading from the
file stream until there is no more data available.

How popen is Implemented

The popen call runs the program you requested by first invoking the shell, sh,
passing it the command string as an argument.

This has two effects, one good, the other not so good.

1. invoking the shell allows complex shell commands to be started with popen.

2. Each call to popen invokes the requested program and the shell program. So,
each call to popen then results in two extra processes being started.

We can count all the lines in example program by cating

the files and then piping its output to wc -1 , which counts the number of lines.
On the command line, we would use:

How It Works

The program creates a pipe and then forks, creating a child process.

The parent and child have access to the pipe.

We can show the sequence pictorially. After the call to pipe:

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 24

After the call to fork:

When the program is rady to transfer data:

Named Pipes: FIFOs

We can exchange data with FIFOs, often referred to as named pipes.

A named pipe is a special type of file that exists as a name in the file system, but
behaves like the unnamed pipes that we've met already.

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 25

We can create a named pipe using the old UNIX mknod command:

$ mknod filename p
However, it is not in X/Open/ command list, so we use the mkfifo command:

$ mkfifo filename

From inside a program, we can use two different calls. These are:

Try It Out - Creating a Named Pipe

For fifo1.c, just type in the following code:

We can look for the pipe with:

How It Works

The program uses the mkfifo function to create a special file.

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 26

Accessing a FIFO

One very useful feature of named pipes is that, because they appear in the file
system, we can use them in commands where we would normally use a file
name.

Try It Out - Accessing a FIFO File

1. First, let's try reading the (empty) FIFO:

2. Now try writing to the FIFO:

3. If we do both at once, we can pass information through the pipe:

NOTICE: the first two stages simply hang until we interrupt them with Ctrl-C.

How It Works

Since there was no data in the FIFO, the cat and echo programs blocks, waiting
for some data to arrive and some other process to read the data, respectively.

The thrid stage works as expected.

Opening a FIFO with open

The main restriction on opening FIFOs is that a program may not open a FIFO
for reading and writing with the mode O_RDWR.

A process will read its own output back from a pipe if it were opened read/write.

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 27

There are four legal combinations of O_RDONLY, O_WRONLY and
the O_NONBLOCK flag. We'll consider each in turn.

 b. What are Message Queues and Semphores? Explain the terms with

the help of Example. (8)

Answer:

In computing, inter-process communication (IPC) is a set of methods for the

exchange of data among multiple threads in one or more processes. Processes

may be running on one or more computers connected by a network. IPC

methods are divided into methods for message passing, synchronization, shared

memory, and remote procedure calls (RPC). The method of IPC used may vary

based on the bandwidth and latency of communication between the threads, and

the type of data being communicated.

There are several reasons for providing an environment that allows process

cooperation:

 Information sharing

 Computational speedup

 Modularity

 Convenience

 Privilege separation

IPC may also be referred to as inter-thread communication and inter-application

communication.

A semaphore is a special varible that takes only whole positive numbers and
upon which only two operations are allowed: wait and signal. They are used to
ensure that a single executing process has exclusive access to a resource.

Here are the signal notations:

Semaphore Definition

A binary semaphore is a variable that can take only the values 0 and 1.

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Thread_(computer_science)
http://en.wikipedia.org/wiki/Process_(computing)
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Message_passing
http://en.wikipedia.org/wiki/Synchronization_(computer_science)
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Privilege_separation

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 28

Semaphores are used to control access to shared resources.� Idea for

semaphores due to Dijsktra.� He introduced the concept semaphores.�These

are global variables used for access control.� He further introduced the P and V

operators.� The P and V operators are defined (not implemented) as follows:

void P(sem)
{

��������� while (sem < 1) ;

��������� sem--;

}
void V(sem)
{

��������� sem++;

}
Do example on how to protect a critical area of code.

Discuss why the above implementation will not work. Semaphores usually live in
the operating system or have special machine language instructions to guarantee
that they really work.

IPC semaphore are a more general and more confusing implementation of

semaphores.� Care has to be taken with semaphore in that there is some risk

associated with them.� There are alternatives to semaphores. These are

referred to as mutexes. They are simpler and much more efficient when working
with threads. They will be discussed in the advanced course.

The following are the system calls for semaphores.

���������

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget(key_t key, int nsem, int semflg);

Returns: the semaphore ID for the set of semaphores.� -1 if error.

nsem - the number of semaphores requested. Most other operating
systems only allow you to request one semaphore at a time.

Semflg - specifies options: IPC_CREAT,� IPC_PRIVATE, IPC_EXCL,

SEM_R, SEM_A. The "A" stands for alter.

AC71/AT71 UNIX SYSTEMS PROGRAMS JUN 2015

© IETE 29

Message queues provide a way of sending a block of data from one process to
another.

Message queues provide an asynchronous communications protocol, meaning

that the sender and receiver of the message do not need to interact with the

message queue at the same time. Messages placed onto the queue are stored

until the recipient retrieves them. Message queues have implicit or explicit limits

on the size of data that may be transmitted in a single message and the number

of messages that may remain outstanding on the queue.

System calls to support messages queues: msgget, msgsend, msgrcv, and
msgctl. Some of the names should sound familiar from the discussion we had of
shared memory.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key_t key,� int msgflg)

TEXT BOOK

I. Advanced Programming in the UNIX Environment, W. Richards Stevens,
Pearson Education, 2004

http://en.wikipedia.org/wiki/Asynchronous_communication
http://en.wikipedia.org/wiki/Communications_protocol

