AC68 FINITE AUTOMATA & FORMULA LANGUAGES

JUN 2015

Solution

Marks

Q.2 a. Prove that for every positive integer n; the number of subsets of an n-element
set is 2" (using mathematical induction).)

Answer:

Let P(n) be the proposition that for every positive integer n; the

number of subsets of an n-element set is 2n: We must show that P(1) is true and
that

the conditional statement P(k)) P(k + 1) istrue fork =1; 2; 3; : : :

BASE STEP P(1) is true since the set S1 has only two subsets viz. _and fa1g.
INDUCTIVE STEP For the inductive hypothesis we as- sume that P(k) holds for an
arbitrary positive integer k: That is, we assume that, for every positive integer k;
The number of subsets of a k element set is 2k: (3) Under this assumption, it must
be shown that P(k + 1) is , i.e. we shall prove that the number of subsets of a

containing k + 1 elements. The subsets of Sk+1 either contain ak+1 or do not
contain it. The subsets not containing ak+1 are precisely the subsets of Sk: Using
(3), we get that this number is 2k. The subsets not containing ak+1 are precisely
the subsets of Sk[fak+1g : Again using (3) we get that this number is 2k. Thus the
total number of subsets of Sk+1 equals 2k + 2k = 2k(1 + 1) = 2k+1:

Since we have completed both, the base step and the inductive step, we have
shown that P(n) is true for all positive integers n.

b. Define Chomsky hierarchy with its automation and production rules. (8)

Answer:

e Type-0 grammars (unrestricted grammars) include all formal grammars. They
generate exactly all languages that can be recognized by a Turing machine. These
languages are also known as the recursively enumerable languages. Note that this is
different from the recursive languages which can be decided by an always-halting
Turing machine.

e Type-1 grammars (context-sensitive grammars) generate the context-sensitive
languages. These grammars have rules of the form with a nonterminal and , and
strings of terminals and nonterminals. The strings and may be empty, but must be
nonempty. The rule is allowed if does not appear on the right side of any rule. The
languages described by these grammars are exactly all languages that can be
recognized by a linear bounded automaton (a nondeterministic Turing machine
whose tape is bounded by a constant times the length of the input.)

e Type-2 grammars (context-free grammars) generate the context-free languages.
These are defined by rules of the form with a nonterminal and a string of terminals
and nonterminals. These languages are exactly all languages that can be recognized
by a non-deterministic pushdown automaton. Context-free languages — or rather the
subset of deterministic context-free language — are the theoretical basis for the
phrase structure of most programming languages, though their syntax also includes

2 Marks

2 Marks
for
inductive
step

4 Marks

2 Marks
for each
type/level

© IETE 1

AC68 FINITE AUTOMATA & FORMULA LANGUAGES

JUN 2015

context-sensitive name resolution due to declarations and scope. Often a subset of
grammars are used to make parsing easier, such as by an LL parser.

e Type-3 grammars (regular grammars) generate the regular languages. Such a
grammar restricts its rules to a single nonterminal on the left-hand side and a right-
hand side consisting of a single terminal, possibly followed by a single nonterminal
(right regular). Alternatively, the right-hand side of the grammar can consist of a
single terminal, possibly preceded by a single nonterminal (left regular); these
generate the same languages — however, if left-regular rules and right-regular rules
are combined, the language need no longer be regular. The rule is also allowed here
if does not appear on the right side of any rule. These languages are exactly all
languages that can be decided by a finite state automaton. Additionally, this family
of formal languages can be obtained by regular expressions. Regular languages are
commonly used to define search patterns and the lexical structure of programming
languages.

Production rules

Grammar Languages Automaton .
(constraints)
Recursively . . -
Type-0 Turing machine a 2 (no restrictions)
enumerable

. ... Linear-bounded non-deterministic
Type-1 Context-sensitive . . \
Turing machine vAp2ayvp

Non-deterministic pushdown

Type-2 Context-free
P - automaton A=y

Finite state automaton A=-a and A-=aB

Type-3 Regular

Q.3 a. Find a deterministic finite accepter that recognizes the set of all strings on
X:{a, b} starting with the prefix ab. 8)

Answer:

The only issue here is the first two symbols in the string after they have been

read, no further decisions need to be made. We can therefore solve the problem
with an automaton that has four states; an initial state, two states for recognizing ab
ending in a final trap state, and one nonfinal trap state. If the first symbol is an a,
and the second is a b, the automaton goes to the final trap state, where it will stay
since the rest of the input does not matter. On the other hand, if the first symbol i$
not an a or the $econd one is not f, b, the automaton enters the nonfinal trap state'

The simple solution is shown in Figure 2.4.

4 Marks

© IETE 2

AC68

FINITE AUTOMATA & FORMULA LANGUAGES

JUN 2015

— l. '?I 0 .Iu

b. Define a non-deterministic automata. Convert the NFA M = ({qo, q1, q2},

@, b

- f} /7

~

{0, 1}, 8, qo, {q2}) into a DFA. The transition function § is given as:-(8)

5[] 0 1

—> qo || qo qo, q1
qi1 |92 q2
q: (| ¢

Answer:

4 Marks

© IETE

AC68 FINITE AUTOMATA & FORMULA LANGUAGES | JUN 2015

4 Marks
Q.4 a. Find a regular expression for the language,

L ={W €{0,1}*: W has no pair of consecutive zeros}. 3
Answer:
One helpful observation is that whenever a 0 occurs, it rnust be followed
immediately by a 1.such as substring may be preceded and followed by an arbitrary
number of 1's. This suggest that the answer involves the repetition of strings of the
form 1 ...101 1, that is, the language denoted by the regular expression(
1*011*)*. However, the answers still incomplete, since the string ending in 0 or
consisting of all 1's are unaccounted for.
After taking care of these special cases we arrive at the answer.

r =(1*011%)*(0+1)+1%(0+ A)
L as the repetition of the strings 1 and 01, the shorter expression
r=(1+01)*(0+ 1)

rnight be reached. Although the two expressions look different, both answer are
correct, as they denote the same language. Generally, there are an unlimited
number: of regular expressions for any given language. 8 Marks

O IETE 4

AC68 FINITE AUTOMATA & FORMULA LANGUAGES

JUN 2015

b. Convert the regular expression to NFA with € -transition.
r.e.=(0+1) | (0+1) ®

Answer: Refer page 97 of Text Book-I
Q.5 a. Prove thatif L and M are regular languages, then L "M is also regular.(8)
Answer: Refer Page 126 of Text Book-I

b. Using the pumping lemma to show that L:{a"b": n > 0} is not regular. (8)

Answer:
Assume that L is regular, so that the pumping lemma must hold. We do
not know the value of m, but whatever it is, we can always choose n=m
Therefore, the substring y musl consist entirely of a's. Suppose lyl =k
The the string obtained by using i=0
Wo=a"*b™ .
And is clearly not in .L. this contradicts the pumping lemma and thereby indicates
that the assumption that L is regular must be false.

Q.6 a. Prove that language L = {a" b™ : n # m} is context free language. (8)

Answer:

Take the case n>m. We first generate a string with an ehual number of a’s
and b's, then add extra a's on the left. This is done with
S—AS
81 — 881 bl .1\,
A —aA| a.
We can use sirnilar reasoning for the case n <m and we get the answer
S—AS,| SiB,
81 — a 81 bl)\,
A—aAla,
B—bB|b.

The resulting grammar is context-free; hence L is a context-free language.
However, the grammar is not linear

b. Construct an npda for the language 8
L={w€{ab}*:n,(W)=n, (W)}.

Answer:

8 Marks

4 Marks

4 Marks

© IETE 5

AC68 FINITE AUTOMATA & FORMULA LANGUAGES | JUN 2015
Tlte complete solution is is an npda is given as:
3 (9o, A, 2)={(qr. 2)},
3 (9o, @, 2)={(Qo, 02)}, 1 Mark for
3 (qo, b, 2)={(qo, 12)}.. each
3 (9o, @, 0)={(qo. 00)},
3 (qo. b, 0)={(do. M)},
3 (qo. @, 1)={(do. A)},
3 (qo, b, 1)={('qo. 11)},
In processing the string baab, the npda, makes the moves 2 Marks
(Qo. baab, z) }(qo, aab,12) F(qo, ab, 2) for)
(%, b,02) F (a0, A 2) F(ar A 2) processing
and hence the string is accepted.
Q.7 a. Convert the grammar with start symbol S, to Chomsky normal form. Show
all the relevant steps briefly. t))
S—>¢|c ST| TSc| SS,
T a|b
Answer:
Step 1: Remove unit and € productions.
There are no unit productions. The € production S —¢€ can be removed after adding the new
rules S — ¢T and S — Tc.
2 Marks
Step 2: Add non-terminal symbols for elements of Z.
We add three non-terminal symbols A,B,C and the three rules A —a. B — b and C — ¢. We
then rewrite the two rules S — cT and S —Tc respectively as S —CT and S — TC.
Moreover, S —CST is rewritten 3 Marks
as S — CST,and S — TScas S —»TSC.
Step 3: Handle productions with more than two non-terminal symbols on the right sides.
We replace the rule S — CST by the two rules S —CU and U — ST. Similarly, we replace
the rule S — TSC by the two rules S — TV and V —SC.
The grammar in Chomsky normal form, therefore, consists of the following rules. The non-
terminal symbols A B are redundant and not shown here.
S—CT|TC|CU|TV|SS,
U —ST,
V — SC,
T ::; a | b 3 Marks
C—c.

b. Show that language L = {a" b" : n >0, n # 100} is context free. (8)

Answer:

© IETE 6

AC68 FINITE AUTOMATA & FORMULA LANGUAGES

JUN 2015

Let

L1= {amobmo}_

Then, because L1 is finite, it is regular. Also, it is easy to see that,
L1={a"b":n20}NL1T (L1 is complement of L1)

Therefore, by the closure of regular languages under complementation and the
closure of context-free languages under regular intersection, the desired

result follows.

Q.8 a. Proceed with the following tasks: t)
(i). Draw a state diagram of a Turing Machine M recognizing the
language L = {a"b" a" n>0} over the alphabet } = {a, b}.
(ii). Consider the input string w = aabbaa. Write the whole sequence of
configurations that M will enter when run on w.
(iii). Does M accept w?

Answer:

~ The correct solutions are as follows (note that your solution might still be
correct even though your Turing machine looks differently):
1.

— — —

4 Marks

© IETE 7

AC68 FINITE AUTOMATA & FORMULA LANGUAGES

JUN 2015

All missing transitions in the picture go implicitly to the state queject.

2. For the input string aabbaa the machine M will pass through the following

sequence of configurations:

qOaabbaa —
|_|axg2baa —
|_|laxbg4xa —
|_|g4axbxa—
|_|xq1xbxa—
|_|xxxxq2a—
|_|XXXQ6xx —
|_|gBXxxXX—

3. Yes.

|_| q1abbaa —
|_|axbq2aa —
|_|axgdbxa —
g4|_| axbxa—
|_|xxq1bxa—
|_[xxxxxq3—
|_|XXQBXXX—
g6|_|xxxxx—

|ag1bbaa —
|axbxg3a —
|agd4xbxa —
|gbaxbxa —
[xxxq2xa —
[XxxXg6x —
|_|tXgBxXXX—

q accept|_| XXXXX

b. Define Turing Machine and explain it’s working. Also define the language

accepted by a TM.

@®)

Answer: Refer Article 8.2.2 & 8.2.5, pages 295 & 306 of Text Book-I

Q.9 a. Define the Turing Machine Halting Problem.

Answer:

@®)

3 Marks

1 Mark

© IETE

AC68 FINITE AUTOMATA & FORMULA LANGUAGES

JUN 2015

The Halting Problem:
In computability theory, the halting problem can be stated as follows: "Given a description
of an arbitrary computer program, decide whether the program finishes running or
continues to run forever". This is equivalent to the problem of deciding, given a program and
an input, whether the program will eventually halt when run with that input, or will run
forever.
An algorithm can be defined as a procedure that always terminates and
gives an
answer. Formally, an algorithm can be defined as a Turing machine that
always
halts (whether succeeds or fails).

A problem is said to be solvable if there is an algorithm that solves
the given
problem (every instance).

A problem is said to be unsolvable if no algorithm exists that solves
the given
problem.

The Halting Problem for Turing machines is defined as follows:

Given a TM M=(Q,x,T',53,q0,F) and an input string x € T'*, will M eventually
halt?

Then, the Halting problem would be solvable if a Turing machine H that
behaves

like illustrated below, can be constructed:

outputs yes iff M halts
e(M)&x » given input x

A 4
I

» outputs no iff M does not
halt given input x

In the above, the symbol & is a separator and e(M) is an encoding of M,
i.e. e(M)
is for example the set of 5-tuples (q,x1,p,r,R) that describe the Turing
machine.

The Halting problem is then:

"Does there exist an effective procedure (computable function) for
deciding, for

every pair (e(M),x); does M halt for x?”

b. Define the Post Correspondence Problem.)
Let > = {0, 1} and take A and B as
w; =11, w, =100, w3 =111
vi =111, v, = 001, v3 = 11. Give a PC solution for this problem.

8 Marks

© IETE 9

AC68 FINITE AUTOMATA & FORMULA LANGUAGES

JUN 2015

If we take

wi1=00, w, =001, w3 =1000

V1= 0, V)= 11, V3 = 011

Then, is there PC solution exist? Justify your answer.

Answer:
The Post correspondence problem is an undecidable decision problem that was

introduced by Emil Post in 19464 Because it is simpler than the halting problem and the

Entscheidungsproblem it is often used in proofs of undecidability.

Definition of the problem

The input of the problem consists of two finite lists @1y «« - ; ¥y and thy .oy Bxof words
over some alphabet A having at least two symbols. A solution to this problem is a sequence

of indices {;Fﬂ)likih’ with £ 2 land 1 £ % £ Nforall &, such that
ﬂln . .QEE = ’ﬁﬁl v -ﬁtﬂ'!c.
The decision problem then is to decide whether such a solution exists or not.

Eg. Consider the following two lists:

a; ay o pi p: P
a ab bba baa aa bb

A solution to this problem would be the sequence (3, 2. 3, 1), because
(g3 0ty = Dbt + b + bba + @ = bbaabbbag = bb+ aa + b +haz = ;.

Furthermore, since (3, 2. 3, 1) 15 a solution, o are all of its "repetitions", such as (3.2, 3, 1. 3,
2.3, 1), efc.; that 15, when a solution exists, there are infinitely many solutions of this
repetitive kind.

4 Marks

© IETE 10

AC68 FINITE AUTOMATA & FORMULA LANGUAGES

JUN 2015

W;=11.W,=100, W5=111
Vi=111.V,=001, Vs=11.
For this case, there exists a PC-solution as Figure 12.7 shows.
If we take
W; =00, W,=001., W3= 1000
Vi=0.V,=11,V3=011

NO, there cannot, be any PC-solution simply because any string composed of
elements of A will be longer than the corresponding string from B.

Figure 12.7

4 Marks

TEXT BOOK

I. Introduction to Automata Theory, Languages and Computation, John E Hopcroft,
Rajeev Motwani, Jeffery D. Ullman, Pearson Education, Third Edition, 2006

© IETE 11

