Solution				
Q.2	a.Prove that for every positive integer n; the number of subsets of an n-element set is 2^{n} (using mathematical induction).			

Answer:

Let $P(n)$ be the proposition that for every positive integer n; the number of subsets of an n-element set is $2 n$: We must show that $P(1)$ is true and that
the conditional statement $P(k)) P(k+1)$ is true for $k=1 ; 2 ; 3 ;:::$
Let $\mathrm{Sn}=\mathrm{fa} 1$; a2; : : : ; ang be a set containing n elements.
BASE STEP $P(1)$ is true since the set $S 1$ has only two subsets viz. _ and fa1g. INDUCTIVE STEP For the inductive hypothesis we as- sume that $P(k)$ holds for an arbitrary positive integer k : That is, we assume that, for every positive integer k; The number of subsets of a k element set is 2 k : (3) Under this assumption, it must be shown that $P(k+1)$ is, i.e. we shall prove that the number of subsets of a $(k+1)$-element set is $2 k+1$: Consider $S k+1=f a 1 ; a 2 ;:: ;$; $\mathrm{ak} ; \mathrm{ak}+1 \mathrm{~g}$ be a set containing $k+1$ elements. The subsets of $\mathrm{Sk}+1$ either contain $\mathrm{ak}+1$ or do not contain it. The subsets not containing ak+1 are precisely the subsets of Sk: Using (3), we get that this number is 2 k . The subsets not containing ak+1 are precisely the subsets of $\operatorname{Sk}[f a k+1 \mathrm{~g}$: Again using (3) we get that this number is 2 k . Thus the total number of subsets of $S k+1$ equals $2 k+2 k=2 k(1+1)=2 k+1$:
Since we have completed both, the base step and the inductive step, we have shown that $P(n)$ is true for all positive integers n.
b. Define Chomsky hierarchy with its automation and production rules. (8)

Answer:

- Type-0 grammars (unrestricted grammars) include all formal grammars. They generate exactly all languages that can be recognized by a Turing machine. These languages are also known as the recursively enumerable languages. Note that this is different from the recursive languages which can be decided by an always-halting Turing machine.
- Type-1 grammars (context-sensitive grammars) generate the context-sensitive languages. These grammars have rules of the form with a nonterminal and, and strings of terminals and nonterminals. The strings and may be empty, but must be nonempty. The rule is allowed if does not appear on the right side of any rule. The languages described by these grammars are exactly all languages that can be recognized by a linear bounded automaton (a nondeterministic Turing machine whose tape is bounded by a constant times the length of the input.)
- Type-2 grammars (context-free grammars) generate the context-free languages. These are defined by rules of the form with a nonterminal and a string of terminals and nonterminals. These languages are exactly all languages that can be recognized by a non-deterministic pushdown automaton. Context-free languages - or rather the subset of deterministic context-free language - are the theoretical basis for the phrase structure of most programming languages, though their syntax also includes

2 Marks
2 Marks
for
inductive
step

4 Marks

2 Marks for each type/level
context-sensitive name resolution due to declarations and scope. Often a subset of grammars are used to make parsing easier, such as by an LL parser.

- Type-3 grammars (regular grammars) generate the regular languages. Such a grammar restricts its rules to a single nonterminal on the left-hand side and a righthand side consisting of a single terminal, possibly followed by a single nonterminal (right regular). Alternatively, the right-hand side of the grammar can consist of a single terminal, possibly preceded by a single nonterminal (left regular); these generate the same languages - however, if left-regular rules and right-regular rules are combined, the language need no longer be regular. The rule is also allowed here if does not appear on the right side of any rule. These languages are exactly all languages that can be decided by a finite state automaton. Additionally, this family of formal languages can be obtained by regular expressions. Regular languages are commonly used to define search patterns and the lexical structure of programming languages.

Grammar	Languages	Automaton	$\begin{aligned} & \text { Production rules } \\ & \text { (constraints) } \end{aligned}$
Type-0	Recursively enumerable	Turing machine	$\alpha \rightarrow \beta$ (no restrictions)
Type-1	Context-sensitive	Linear-bounded non-deterministic Turing machine	$\alpha A \beta \rightarrow \alpha \gamma \beta$
Type-2	Context-free	Non-deterministic pushdown automaton	$A \rightarrow \gamma$
Type-3	Regular	Finite state automaton	$A \rightarrow a$ and $A \rightarrow a B$

Q. 3 a. Find a deterministic finite accepter that recognizes the set of all strings on $X:\{a, b\}$ starting with the prefix $a b$.

Answer:

The only issue here is the first two symbols in the string after they have been read, no further decisions need to be made. We can therefore solve the problem with an automaton that has four states; an initial state, two states for recognizing ab ending in a final trap state, and one nonfinal trap state. If the first symbol is an a, and the second is a b, the automaton goes to the final trap state, where it will stay since the rest of the input does not matter. On the other hand, if the first symbol i\$ not an a or the \$econd one is not f, b, the automaton enters the nonfinal trap state' The simple solution is shown in Figure 2.4.

Fig.2.4
b. Define a non-deterministic automata. Convert the NFA $M=\left(\left\{\mathbf{q}_{0}, \mathbf{q}_{1}, \mathbf{q}_{2}\right\}\right.$, $\left.\{0,1\}, \delta, q_{0},\left\{q_{2}\right\}\right)$ into a DFA. The transition function δ is given as:-(8)

δ	0	1
\mathbf{q}_{0}	\mathbf{q}_{0}	$\mathbf{q}_{0}, \mathbf{q}_{1}$
\mathbf{q}_{1}	\mathbf{q}_{2}	\mathbf{q}_{2}
\mathbf{q}_{2}	ϕ	ϕ

Answer:

b. Convert the regular expression to NFA with \in-transition.

$$
\begin{equation*}
\text { r.e. } \Rightarrow(0+1)^{*} \mid(0+1) \tag{8}
\end{equation*}
$$

Answer: Refer page 97 of Text Book-I
Q. 5 a. Prove that if L and M are regular languages, then $L \cap M$ is also regular.(8)

Answer: Refer Page 126 of Text Book-I
b. Using the pumping lemma to show that $L:\left\{a^{n} b^{n}: n \geq 0\right\}$ is not regular.

Answer:

Assume that L is regular, so that the pumping lemma must hold. We do not know the value of m, but whatever it is, we can always choose $n=m$
Therefore, the substring y musl consist entirely of a's. Suppose lyl =k
The the string obtained by using $\mathrm{i}=0$
$W_{0}=a^{m-k} b^{m}$.
And is clearly not in .L. this contradicts the pumping lemma and thereby indicates that the assumption that L is regular must be false.

$$
\text { Q. } 6 \text { a. Prove that language } L=\left\{a^{n} b^{m}: n \neq m\right\} \text { is context free language. (8) }
$$

Answer:

Take the case $n>m$. We first generate a string with an equal number of a's and b's, then add extra a's on the left. This is done with
$S \rightarrow A S_{1}$,
$\mathrm{S}_{1} \rightarrow \mathrm{aS}_{1} \mathrm{~b} \mid \lambda$,
$A \rightarrow a A \mid a$.
We can use sirnilar reasoning for the case $\mathrm{n}<\mathrm{m}$ and we get the answer $S \rightarrow A S_{1} \mid S_{1} B$,
$\mathrm{S}_{1} \rightarrow \mathrm{a} \mathrm{S}_{1} \mathrm{~b} \mid \lambda$,
$A \rightarrow a A \mid a$,
$B \rightarrow b B \mid b$.
The resulting grammar is context-free; hence L is a context-free language.

8 Marks

4 Marks

4 Marks

However, the grammar is not linear
b. Construct an npda for the language

$$
\begin{equation*}
\mathrm{L}=\left\{\mathrm{w} €\{\mathrm{a}, \mathrm{~b}\}^{*}: \mathrm{n}_{\mathrm{a}}(\mathrm{w})=\mathrm{n}_{\mathrm{b}}(\mathrm{w})\right\} . \tag{8}
\end{equation*}
$$

Answer:

Tlte complete solution is is an npda is given as：

$$
\text { 乙 }\left(\mathrm{q}_{0}, \lambda, \mathrm{z}\right)=\left\{\left(\mathrm{q}_{\mathrm{f}}, \mathrm{z}\right)\right\},
$$

Z $\left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{z}\right)=\left\{\left(\mathrm{q}_{\mathrm{o}}, \mathrm{Oz}\right)\right\}$ ，
$z\left(q_{0}, b, z\right)=\left\{\left(q_{0}, 1 z\right)\right\}$ ，．
Z $\left(q_{0}, \mathrm{a}, 0\right)=\left\{\left(\mathrm{q}_{0}, 00\right)\right\}$ ，
Z $\left(\mathrm{q}_{0}, \mathrm{~b}, 0\right)=\left\{\left(\mathrm{q}_{0}, \lambda\right)\right\}$ ，
己 $\left(q_{0}, a, 1\right)=\left\{\left(q_{0}, \lambda\right)\right\}$,
己 $\left(q_{0}, b, 1\right)=\left\{\left(q_{0}, 11\right)\right\}$ ，
In processing the string baab，the npda，makes the moves
$\left(q_{0}\right.$, baab，$\left.z\right) \vdash\left(q_{0}, a a b, 1 z\right) \vdash\left(q_{0}, a b, z\right)$

$$
f\left(q_{0}, b, 0 z\right) \vdash\left(q_{0}, \lambda, z\right) \vdash\left(q_{f}, \lambda, z\right)
$$

and hence the string is accepted．

$$
\begin{align*}
& \text { Q. } 7 \text { a. Convert the grammar with start symbol S, to Chomsky normal form. Show } \\
& \text { all the relevant steps briefly. } \tag{8}\\
& \mathrm{S} \rightarrow \varepsilon|\mathrm{c} \mathrm{ST}| \mathrm{TSc} \mid \mathrm{SS},
\end{align*}
$$

1 Mark for each

2 Marks
processing

2 Marks

3 Marks

3 Marks
b．Show that language $L=\left\{a^{n} b^{n}: n \geq 0, n \neq 100\right\}$ is context free．
Answer：

Let
 $$
\mathrm{L} 1=\left\{\mathrm{a}^{100} \mathrm{~b}^{100}\right\} .
$$

Then, because L1 is finite, it is regular. Also, it is easy to see that, $\mathrm{L} 1=\left\{\mathrm{a}^{n} \mathrm{~b}^{\mathrm{n}}: \mathrm{n} \geq 0\right\} \cap \mathrm{L1} \quad$ ($\mathrm{L} 1^{\prime}$ is complement of L)
Therefore, by the closure of regular languages under complementation and the closure of context-free languages under regular intersection, the desired result follows.

Q. 8 a. Proceed with the following tasks:

(i). Draw a state diagram of a Turing Machine M recognizing the language $L=\left\{a^{n} b^{n} a^{n} n \geq 0\right\}$ over the alphabet $\sum=\{a, b\}$.
(ii). Consider the input string $w=$ aabbaa. Write the whole sequence of configurations that M will enter when run on w.
(iii). Does M accept w?

Answer:
The correct solutions are as follows (note that your solution might still be correct even though your Turing machine looks differently):
1.

4 Marks

All missing transitions in the picture go implicitly to the state $\mathrm{q}_{\text {reject. }}$
2. For the input string aabbaa the machine M will pass through the following sequence of configurations:

q0aabbaa \rightarrow	\|_ q1abbaa \rightarrow	__\|aq1bbaa \rightarrow		
\|_	axq2baa \rightarrow	\|_	axbq2aa \rightarrow	-_\|axbxq3a \rightarrow
-\|axbq4xa \rightarrow	\|_	axq4bxa \rightarrow	_\|aq4xbxa \rightarrow	
-\|q4axbxa \rightarrow	q4\|_	axbxa \rightarrow	-\|q5axbxa \rightarrow	
-_\|xq1xbxa \rightarrow	\|_	xxq1bxa \rightarrow	-_\|xxxq2xa \rightarrow	
\|xxxxq2a \rightarrow	\|_	xxxxxq3 \rightarrow	I_\|xxxxq6x \rightarrow	
-\|xxxq6xx \rightarrow	\|_	xxq6xxx \rightarrow	\|_	txq6xxxx \rightarrow
L_\|q6xxxxx \rightarrow	q6\|_	xxxxx \rightarrow	q accept\|_	XXXXX

3. Yes.
b. Define Turing Machine and explain it's working. Also define the language accepted by a TM.

Answer: Refer Article 8.2.2 \& 8.2.5, pages 295 \& 306 of Text Book-I

Q. 9 a. Define the Turing Machine Halting Problem.

Answer:

3 Marks
1 Mark

The Halting Problem:

In computability theory, the halting problem can be stated as follows: "Given a description of an arbitrary computer program decide whether the program finishes running or continues to run forever". This is equivalent to the problem of deciding, given a program and an input, whether the program will eventually halt when run with that input, or will run forever.
An algorithm can be defined as a procedure that always terminates and gives an
answer. Formally, an algorithm can be defined as a Turing machine that always
halts (whether succeeds or fails).
A problem is said to be solvable if there is an algorithm that solves the given
problem (every instance).
A problem is said to be unsolvable if no algorithm exists that solves the given problem.

The Halting Problem for Turing machines is defined as follows:
Given a TM $M=(Q, \Sigma, \Gamma, \delta, q 0, F)$ and an input string $x \in \Gamma^{*}$, will M eventually halt?
Then, the Halting problem would be solvable if a Turing machine H that behaves
like illustrated below, can be constructed:

In the above, the symbol \& is a separator and $e(M)$ is an encoding of M, i.e. e(M)
is for example the set of 5 -tuples ($q, x 1, p, r, R$) that describe the Turing machine.

The Halting problem is then:
"Does there exist an effective procedure (computable function) for deciding, for
every pair (e(M),x); does M halt for x ?"
b. Define the Post Correspondence Problem.

Let $\sum=\{0,1\}$ and take A and B as
$\mathrm{w}_{1}=11, \mathrm{w}_{2}=100, \mathrm{w}_{3}=111$
$v_{1}=111, v_{2}=001, v_{3}=11$. Give a PC solution for this problem.

```
If we take
\(\mathrm{w}_{1}=00, \mathrm{w}_{2}=001, \mathrm{w}_{3}=1000\)
\(\mathrm{v}_{1}=0, \mathrm{v}_{2}=11, \mathrm{v}_{3}=011\)
Then, is there PC solution exist? Justify your answer.
```

Answer:
The Post correspondence problem is an undecidable decision problem that was introduced by Emil Post in $1946 .{ }^{[1]}$ Because it is simpler than the halting problem and the Entscheidungsproblem it is often used in proofs of undecidability.

Definition of the problem

The input of the problem consists of two finite lists $\alpha_{1}, \ldots, \alpha_{N}$ and $\beta_{1}, \ldots, \beta_{N \text { of words }}$ over some alphabet A having at least two symbols. A solution to this problem is a sequence of indices $\left(i_{k}\right)_{1 \leq k \leq K}$ with $K \geq 1_{\text {and }} 1 \leq i_{k} \leq N_{\text {for all }} k$, such that

$$
\alpha_{i 1} \ldots \alpha_{i K}=\beta_{i 1} \ldots \beta_{i K}
$$

The decision problem then is to decide whether such a solution exists or not.
Eg. Consider the following two lists:

$\boldsymbol{\alpha}_{1}$	$\boldsymbol{\alpha}_{2}$	α_{3}	$\boldsymbol{\beta}_{1}$	$\boldsymbol{\beta}_{2}$	$\boldsymbol{\beta}_{3}$
a	$a b$	$b b a$	$b a a$	$a a$	$b b$

A solution to this problem would be the sequence ($3,2,3,1$), because

$$
a_{3} a_{2} a_{3} a_{1}=b b a+a b+b b a+a=b b a a b b b a a=b b+a a+b b+b a a=\beta_{3} \beta_{2} \beta_{3} \beta_{1}
$$

Furthermore, since $(3,2,3,1)$ is a solution, so are all of its "repetitions", such as $(3,2,3,1,3$, $2,3,1$), etc.; that is, when a solution exists, there are infinitely many solutions of this repetitive kind.

$$
\begin{aligned}
\mathrm{W}_{1}=11, \mathrm{~W}_{2} & =100, \mathrm{~W}_{3}=111 \\
\mathrm{~V}_{1} & =111, \mathrm{~V}_{2}=001, \mathrm{~V}_{3}=11 .
\end{aligned}
$$

For this case, there exists a PC-solution as Figure 12.7 shows.
If we take
$\mathrm{W}_{1}=00, \mathrm{~W}_{2}=001, \mathrm{~W}_{3}=1000$

$$
\mathrm{V}_{1}=0, \mathrm{~V}_{2}=11, \mathrm{~V}_{3}=011
$$

NO, there cannot, be any PC-solution simply because any string composed of elements of A will be longer than the corresponding string from B.

Figure 12.7

TEXT BOOK

I. Introduction to Automata Theory, Languages and Computation, John E Hopcroft, Rajeev Motwani, Jeffery D. Ullman, Pearson Education, Third Edition, 2006

