Q. 2 a. Check the validity of the following argument:-

(8)
"If the labour market is perfect then the wages of all persons in a particular employment will be equal. But it is always the case that wages for such persons are not equal therefore the labour market is not perfect."
Answer:
Let p : "Labour market is perfect"; q : "Wages of all persons in a particular employment will be equal". Then the given statement can be written as (7)
$[(\mathrm{p} \square \mathrm{q}) \square \square \sim \mathrm{q}] \square \square \sim \mathrm{p}$
Now, $[(\mathrm{p} \square \mathrm{q}) \square \square \sim \mathrm{q}] \square \square \sim \mathrm{p}=[(\sim \mathrm{p} \square \mathrm{q}) \square \square \sim \mathrm{q}] \square \square \sim \mathrm{p}$
$=[(\sim p \square \square \sim q) \square \square(q \square \square \sim q)] \square \square \sim p$
$=[(\sim p \square \square \sim q) \square \square 0] \square \square \sim p$
$=[\sim(p \square \square q)] \square \square \sim p$
$=\sim[\sim(p \square \square q)] \square \square \sim p$
$=(p \square \square q) \square \square \sim p=(p \square \square \sim p) \square \square q=1 \square \square q=1$
A tautology. Hence the given statement is true.
b. Let L be a distributive lattice. Show that if there exists an a with
$a \wedge x=a \wedge y$ and $a \vee x=a \vee y$, then $x=y$.

3 marks for mutating
5 marks for validating

$$
-20-20
$$

Answer:
In any distributive lattice L, for any three elements a, x, y of L, we can write
$\mathrm{x}=\mathrm{x} \square \square(\mathrm{a} \square \square \mathrm{x})$
$=(x \square \square a) \square \square(x \square x)$ [Distributive law]
$=(a \square \square x) \square \square x[$ Commutative and Idempotent law]
$=(a \square \square y) \square \square x[$ Given that $(a \square \square x)=(a \square \square y)]$
= (a $\square \square \mathrm{y}) \square \square(\mathrm{y} \square \square \mathrm{x})$ [Distributive law]
$=(a \square \square \mathrm{y}) \square \square(\mathrm{y} \square \square \mathrm{x})$ [Given that $(\mathrm{a} \square \square \mathrm{x})=(\mathrm{a} \square \square \mathrm{y})$]
= $(\mathrm{y} \square \square \mathrm{a}) \square \square(\mathrm{y} \square \square \mathrm{x})$ [Commutative law]
$=\mathrm{y} \square \square(\mathrm{a} \square \square \mathrm{x})$ [Distributive law]
$=\mathrm{y} \square \square(\mathrm{a} \square \square \mathrm{y})$ [Given that $(\mathrm{a} \square \square \mathrm{x})=(\mathrm{a} \square \square \mathrm{y})$]
$=y$.

Q. 3 a. Solve the recurrence relation

$$
\begin{equation*}
T(k)=2 T(k-1), T(0)=1 \tag{8}
\end{equation*}
$$

Answer:

The given equation can be written in the following form:
tn -2 tn-1 $=0$
Now successively replacing n by $(n-1)$ and then by $(n-2)$ and so on we get a set of equations.

The process is continued till terminating condition. Add these equations in such a way that all intermediate terms get cancelled. The given equation can be rearranged as
tn - 2tn-1 = 0
tn-1 -2 tn-2 $=0$
Stepwise marking
tn-2 -2 tn- $3=0$
tn-3-2tn-4 $=0$
..t
$2-2 \mathrm{t} 1=0$
$\mathrm{t} 1-2 \mathrm{t} 0=0$ [we stop here, since $\mathrm{t} 0=1$ is given]
Multiplying all the equations respectively by $2^{\wedge} 0,2^{\wedge} 1,2^{\wedge} 2$ $2^{\wedge} \mathrm{n}-1$ and then adding them together, weget $\mathrm{tn}-2^{\wedge} \mathrm{n}$ t0 $=0$
or, $\mathrm{tn}=2^{\wedge} \mathrm{n}$
b. What are the different types of quantifiers? Explain in brief.

Show that $(\exists x)(P(x) \wedge Q(x))=>(\exists x) P(x) \wedge(\exists x) Q(x)$
Answer: There are two quantifiers used in predicate calculus: Universal and existential.
Universal Quantifier: The operator, represented by the symbol \forall, used in predicate calculus to indicate that a predicate is true for all members of a specified set.
Some verbal equivalents are "for each" or "for every". (2+2)
Existential Quantifier: The operator, represented by the symbol \exists, used in predicate calculus to indicate that a predicate is true for at least one member of a specified set.
Some verbal equivalents are "there exists" or "there is".
Now, ($\square \mathrm{x})(\mathrm{P}(\mathrm{x}) \square \square \mathrm{Q}(\mathrm{x})$) => For some ($\mathrm{x}=\mathrm{c}$) ($\mathrm{P}(\mathrm{c}) \square \square \mathrm{Q}(\mathrm{c})$)
$=>P(c) \square \square Q(c)$
$=>x^{P}(\mathrm{x}) \square \square \square \mathrm{x} Q(\mathrm{x})(4)$
Q. 4 a. If f is a homomorphism from a commutative semigroup ($\mathrm{S},{ }^{*}$) onto a semigroup ($T, *^{\prime}$), then show that ($T, *^{\prime}$) is also commutative.

Answer:

The function f is said to be a homomorphism of S into T if (7)
$\mathrm{f}(\mathrm{a} \square \square \mathrm{b})=\mathrm{f}(\mathrm{a}) \square^{\prime} \mathrm{f}(\mathrm{b}) \square \square \mathrm{a}, \mathrm{b} \square \square \mathrm{S}$
i.e. f preserves the composition in S and T.

It is given that $\left(\mathrm{S},{ }^{*}\right)$ is commutative, so
$a * b=b^{*} a \quad f\left(a^{*} b\right)=f\left(b^{*} a\right) \square \square a, b \square \square S$
$=>f(a)^{* \prime} f(b)=f(b)^{* \prime} f(a)$
=>(T,*') is also commutative.
b. How many words of 4 letters can be formed with the letters a, b, c, d, e, f, g and h, when
(i) e and f are not to be included
(ii) e and f are to be included

Answer:

There are 8 letters: $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}$ and h . In order to form a word of 4 letters, we have to find the number of ways in which 4 letters can be selected from 8 letters. Here order is important, so permutation is used.
(i) When \mathbf{e} and \mathbf{f} are not to be included, the available letters are 6 only. Thus we can select 4 out of six to form a word of length 4 in 6P4 ways $=6!/(6-4)!=360$ Thus 360 words can be formed. (4)
(ii) When \mathbf{e} and \mathbf{f} are to be included, the available letters are all 8 letters. Thus we can select 4 out of 8 to form a word of length 4 in 8 P4 ways $=8!/(8-4)!=1680$. Thus 1680 words can be formed. (4)
Q. $5 \quad$ a. Let x be the set of all programs of a given programming language. Let R the
relation on x defined as $P 1 R P 2$ if $P 1$ and $P 2$ give the same output on all the
inputs for which they terminate. Is R an equivalence relation? If not which
property fails?

Answer:
Ans: R is defined on the set X of all programs of a given programming language. Now let us test whether R is an equivalence relation or not
Reflexivity: Let P be any element of X then obviously P gives same output on all the inputs for which P terminates i.e. $P R P$. Thus R is reflexive.
Symmetry: Let P and Q are any two elements in X such that $P R Q$. Then P and Q give same boutput on all the inputs for which they terminate $=>Q R P=>R$ is symmetric. (4)
Transitivity: Let P, Q and S are any three elements in X such that $P R Q$ and $Q R$. It means P and Q gives the same out for all the inputs for which they terminate.
Similar is the case for Q and S. It implies that there exists a set of common programs from which P, Q and S give the same output on all the inputs for which they terminate i.e. $P R S=>R$ is transitive.
Therefore R is an equivalence relation. (4)
b. Prove that for every positive integer $n, n^{\mathbf{3}}-\mathbf{n}$ is divisible by 3 .

Answer:
Let $\mathrm{P}(\mathrm{n})$ be the proposition that for every positive integer n ; $\mathrm{n} 3 \square \mathrm{n}$ is
divisible by 3 . We must show that $P(1)$ is true and that the conditional statement $P(k)$ $=>P(k+1)$ is true for $k=1 ; 2 ; 3 ;:::$
BASE STEP $P(1)$ is true, because $1^{\wedge} 3-1=0$ is divisible by 3 . (2)
INDUCTIVE STEP For the inductive hypothesis we assume that $P(k)$ holds for an arbitrary positive integer k :That is, we assume that, For every positive integer k, $\mathrm{k}^{\wedge} 3-\mathrm{k}$ is divisible by 3 (2)

Under this assumption, it must be shown that $P(k+1)$ is true, namely, that $3 j[(k+$
1)^3-(k+1)]
is also true
$=(k+1)^{\wedge} 3-(k+1)=k^{\wedge} 3+3 k^{\wedge} 2+3 k+1-k-1$
$=k^{\wedge} 3-k+3 k^{\wedge} 2+3 k$
$=k 3-k+3\left(k^{\wedge} 2+k\right)$.
Using (2) we know that k3-k is divisible by 3 for every positive integer k : Moreover
$3\left(k^{\wedge} 2+k\right)$ is also a multiple of 3 for every positive integer k : Thus $k^{\wedge} 3-k+3\left(k^{\wedge} 2+k\right)$ is divisible by 3 . Since we have completed both, the base step and the inductive step we have shown that $P(n)$ is true for all positive integers n. (6)
Q. 6 a. What are tautologies and contradiction? Prove that, for any propositions P, \mathbf{Q}, \mathbf{R} the following compound propositions are tautologies:
(i) $[(\mathrm{P} \rightarrow \mathrm{Q}) \wedge(\mathrm{P} \rightarrow \mathrm{R})] \rightarrow(\mathrm{P} \rightarrow \mathrm{R})$
(ii) $[\mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{R})] \rightarrow[(\mathrm{P} \rightarrow \mathrm{Q}) \rightarrow(\mathrm{P} \rightarrow \mathrm{R})]$

Answer:
Page 57, Discrete Mathematical Structures by Trembly
b. Show that $S \vee R$ is tautologically implied by $(P \vee Q) \wedge(P \rightarrow R) \wedge(Q \rightarrow S)$.
(8)

Answer:

Let us find the truth table for $[(P \vee Q) \wedge(P \rightarrow R) \wedge(Q \rightarrow S)] \rightarrow(S \vee R)$.
$\left.\begin{array}{llllll}P & Q & R & S(P \vee Q)(P \rightarrow R)(Q \rightarrow S)(S \vee R) & {[(P \vee Q) \wedge(P \rightarrow R) \wedge(Q \rightarrow S)] \rightarrow(S \vee R)} \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0\end{array}\right)$

Q. 7 a. Consider the function $\mathbf{f}: \mathbf{N} \rightarrow \mathbf{N}$, where \mathbf{N} is the set of natural numbers, defined by $f(n)=n^{2}+n+1$. Show that the function f is one-one but not onto.

Answer:

In order to prove that f is one to one, it is required to prove that for any two integers n and m, if $f(n)=f(m)$ then $n=m$. (7)
$\mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{m}) \square \square \mathrm{n}^{\wedge} 2+\mathrm{n}+1=\mathrm{m}^{\wedge} 2+\mathrm{m}+1$
$\square \square n^{\wedge} 2+n=m^{\wedge} 2+m$

$\square \square \mathrm{n}(\mathrm{n}+1)=\mathrm{m}(\mathrm{m}+1)$

$\square \square \mathrm{n}=\mathrm{m}$. Because product of consecutive natural numbers starting from m and n are equal iff $m=n$.
Next f is not onto because for any n (odd or even) $n^{\wedge} 2+n+1$ is odd. This implies that there areeven elements in N that are not image of any element in N.
b. Using principles of inclusion and exclusion determine the number of integers between 1 and 250 that are divisible by any of the integers $2,3,5$ or 7.
(8)

Answer:
Page No. 24 Dis. Math by C L I U Dr Mohrpeh
Q. 8 a. Find the orders of the groups $U\left(Z_{10}\right), U\left(Z_{11}\right)$, and $U\left(Z_{12}\right)$, and describe their structure.

Answer:

Solution The set $U(Z 10)$ is $\{1,3,7,9\}$. In this case (8)
$3^{\wedge} 2=9,3^{\wedge} 3=7,3^{\wedge} 4=1$,
so the group is a cyclic group of order 4.
$U(Z 11)=\{1,2, \ldots, 10\}$ and here
$2^{\wedge} 2=4,2^{\wedge} 3=8,2^{\wedge} 4=5,2^{\wedge} 5=10,2^{\wedge} 6=9,2^{\wedge} 7=7,2^{\wedge} 8=3,2^{\wedge} 9=6,2^{\wedge} 10=1$,
So the group is a cyclic group of order 10.
$U(Z 12)=\{1,5,7,11\}$. Here every non-identity element has order 2 :
$5^{\wedge} 2=1,7^{\wedge} 2=1,11^{\wedge} 2=1$.
So in this case the group is the non-cyclic group of order $4, \mathrm{C} 2 \times \mathrm{C} 2$.
b. By finding a suitable generator, show that the multiplicative group of the field Z_{23} is cyclic.
Answer:
In the absence of further information, the obvious method is to try the smallest numbers first. Trying 2 , we get the powers
$2,4,8,16,9,18,13,3,6,12,1$. (8)
Some non-zero elements of Z23, for example 10, are not in this list, so 2 is not a generator. Also, since 3 and 4 are in the list above, they cannot be generators (if 10 were a power of 3 , it would also be a power of 2 , since $3=2^{\wedge} 8$). So we must try 5 , whose powers are:
$5,2,10,4,20,8,17,16,11,9,22,18,21,13,19,3,15,6,7,12,14,1$.
This list is complete, so 5 is a generator and we have $\mathrm{U}(\mathrm{Z} 23)=<5>\approx \mathrm{C} 22$.
Q. 9 a. Let \mathbf{G} be the set of real numbers not equal to $\mathbf{- 1}$ and * be defined by $\mathbf{a * b}=\mathbf{a}+$ $\mathbf{b}+\mathbf{a b}$. Prove that $\left(\mathbf{G},{ }^{*}\right)$ is an abelian group.

Answer:

Page No. 353 of Discrete Mathematics by Dr. D S C
b. Prove that $\mathrm{A} \cup \mathrm{B}=(\mathrm{A}-\mathrm{B}) \cup(\mathrm{B}-\mathrm{A}) \cup(\mathrm{A} \cap \mathrm{B})$

Answer:
(b) Ans: In order to prove this let x be any element of $A \cup B$, then
$\Leftrightarrow(x \in A$ and $x \notin B)$ or $(x \in B$ and $x \notin A)$ or $(x \in A$ and $x \in B)$
$\Leftrightarrow(x \in A-B)$ or $(x \in B-A)$ or $(x \in A \cap B)$
$\Leftrightarrow x \in(A-B) \cup(B-A) \cup(A \cap B)$
This implies that
$A \cup B \subseteq(A-B) \cup(B-A) \cup(A \cap B)$ and
$(A-B) \cup(B-A) \cup(A \cap B) \subseteq A \cup B$
Thus $A \cup B=(A-B) \cup(B-A) \cup(A \cap B)$

TEXT BOOK

I. Discrete Mathematical Structures, D. S. Chandrasekharaiah, Prism Books Pvt. Ltd., 2005

