
AC63/AT63 SOFTWARE ENGINEERING JUN 2015

© IETE 1

 Q.2 a. What is project plan? Discuss the purpose of each of the sections in a

software project plan. (5)

Answer:

The project plan sets out the resources available to the project, the work breakdown and a

schedule for carrying out the work. In some organisations, the project plan is a single

document that includes the different types of plan. In other cases, the project plan is

solely concerned with the development process. The details of the project plan vary

depending on the type of project and organisation. However, most plans should include

the following sections:

1. Introduction This briefly describes the objectives of the project and sets out the

constraints (e.g., budget, time, etc.) that affect the project management.

2. Project organisation This describes the way in which the development team is

organised, the people involved and their roles in the team.

3. Risk analysis This describes possible project risks, the likelihood of these risks arising

and the risk reduction strategies that are proposed.

4. Hardware and software resource requirements This specifies the hardware and the

support software required to carry out the development. If hardware has to be bought,

estimates of the prices and the delivery schedule may be included.

5. Work breakdown This sets out the breakdown of the project into activities and

identifies the milestones and deliverables associated with each activity.

6. Project schedule This shows the dependencies between activities, the estimated time

required to reach each milestone and the allocation of people to activities.

7. Monitoring and reporting mechanisms This defines the management reports that

should be produced, when these should be produced and the project monitoring

mechanisms used.

 b. Describe the different activities involved in the system design process. (4)

Answer:

System design as shown in figure 2(b) is concerned with how the system functionality is

to be provided by the components of the system. The activities involved in this process

are:

1. Partition requirements You analyse the requirements and organise them into related

groups. There are usually several possible partitioning options, and you may suggest a

number of alternatives at this stage of the process.

2. Identify sub-systems You should identify sub-systems that can individually or

collectively meet the requirements. Groups of requirements are usually related to sub-

systems, so this activity and requirements partitioning may be amalgamated. However,

sub-system identification may also be influenced by other organizational or

environmental factors.

3. Assign requirements to sub-systems You assign the requirements to subsystems. In

principle, this should be straightforward if the requirements partitioning is used to drive

the sub-system identification. In practice, there is never a clean match between

requirements partitions and identified sub-systems. Limitations of externally purchased

sub-systems may mean that you have to change the requirements to accommodate these

constraints.

AC63/AT63 SOFTWARE ENGINEERING JUN 2015

© IETE 2

4. Specify sub-system functionality You should specify the specific functions provided by

each sub-system. This may be seen as part of the system design phase or, if the sub-

system is a software system, part of the requirements specification activity for that

system. You should also try to identify relationships between sub-systems at this stage.

5. Define sub-system interfaces You define the interfaces that are provided and required

by each sub-system. Once these interfaces have been agreed upon, it becomes possible to

develop these sub-systems in parallel.

Figure 2(b) The system design process

 c. With the help of suitable figure, discuss the four main phases in the

requirements engineering process. (7)

Answer:

Software specification or requirements engineering is the process of understanding and

defining what services are required from the system and identifying the constraints on the

system’s operation and development. Requirements engineering is a particularly critical

stage of the software process as errors at this stage inevitably lead to later problems in the

system design and implementation.

The requirements engineering process is shown in figure 2(c). This process leads to the

production of a requirements document that is the specification for the system.

Requirements are usually presented at two levels of detail in this document. End-users

and customers need a high-level statement of the requirements; system developers need a

more detailed system specification.

There are four main phases in the requirements engineering process:

1. Feasibility study An estimate is made of whether the identified user needs may be

satisfied using current software and hardware technologies. The study considers whether

the proposed system will be cost-effective from a business point of view and whether it

can be developed within existing budgetary constraints. A feasibility study should be

relatively cheap and quick. The result should inform the decision of whether to go ahead

with a more detailed analysis.

2. Requirements elicitation and analysis This is the process of deriving the system

requirements through observation of existing systems, discussions with potential users

and procurers, task analysis and so on. This may involve the development of one or more

system models and prototypes. These help the analyst understand the system to be

specified.

3. Requirements specification The activity of translating the information gathered during

the analysis activity into a document that defines a set of requirements. Two types of

requirements may be included in this document. User requirements are abstract

statements of the system requirements for the customer and

AC63/AT63 SOFTWARE ENGINEERING JUN 2015

© IETE 3

end-user of the system; system requirements are a more detailed description of the

functionality to be provided.

4. Requirements validation This activity checks the requirements for realism, consistency

and completeness. During this process, errors in the requirements document are

inevitably discovered. It must then be modified to correct these problems.

Of course, the activities in the requirements process are not simply carried out in a strict

sequence. Requirements analysis continues during definition and specification, and new

requirements come to light throughout the process. Therefore, the activities of analysis,

definition and specification are interleaved. In agile methods such as extreme

programming, requirements are developed incrementally according to user priorities, and

the elicitation of requirements comes from users who are part of the development team.

Figure 2(c) The requirements engineering process

 Q.3 a. What is requirement validation? What are the different checks should

be carried out on the requirements in the requirement document

during the requirements validation process? What are the

requirements validations techniques that can be used in conjunction

or individually? (2+4+4)

Answer:

Requirements validation is concerned with showing that the requirements actually define

the system that the customer wants. Requirements validation overlaps analysis in that it is

concerned with finding problems with the requirements. Requirements validation is

important because errors in a requirements document can lead to extensive rework costs

when they are discovered during development or after the system is in service. The cost

of fixing a requirements problem by making a system change is much greater than

repairing design or coding errors. The reason for this is that a change to the requirements

usually means that the system design and implementation must also be changed and then

the system must be tested again.

During the requirements validation process, checks should be carried out on the

requirements in the requirements document. These checks include:

1. Validity checks A user may think that a system is needed to perform certain functions.

However, further thought and analysis may identify additional or different functions that

AC63/AT63 SOFTWARE ENGINEERING JUN 2015

© IETE 4

are required. Systems have diverse stakeholders with distinct needs, and any set of

requirements is inevitably a compromise across the stakeholder community.

2. Consistency checks Requirements in the document should not conflict. That is, there

should be no contradictory constraints or descriptions of the same system function.

3. Completeness checks The requirements document should include requirements, which

define all functions, and constraints intended by the system user.

4. Realism checks Using knowledge of existing technology, the requirements should be

checked to ensure that they could actually be implemented. These checks should also take

account of the budget and schedule for the system development.

5. Verifiability To reduce the potential for dispute between customer and contractor,

system requirements should always be written so that they are verifiable. This means that

you should be able to write a set of tests that can demonstrate that the delivered system

meets each specified requirement.

A number of requirements validation techniques can be used in conjunction or

individually:

1. Requirements reviews The requirements are analysed systematically by a team of

reviewers. This process is discussed in the following section.

2. Prototyping In this approach to validation, an executable model of the system is

demonstrated to end-users and customers. They can experiment with this model to see if

it meets their real needs.

3. Test-case generation Requirements should be testable. If the tests for the requirements

are devised as part of the validation process, this often reveals requirements problems. If

a test is difficult or impossible to design, this usually means that the requirements will be

difficult to implement and should be reconsidered. Developing tests from the user

requirements before any code is written is an integral part of extreme programming.

 b. Give example of the type of system models that you might create

during the analysis process. (6)

Answer:

Examples of the types of system models that might be created during the analysis process

are:

 A data-flow model: Data-flow models show how data is processed at different

stages in the system.

 A composition model: A composition or aggregation model shows how entities in

the system are composed of other entities.

 An architectural model: Architectural models show the principal sub-systems that

make up a system.

 A classification model: Object class/inheritance diagrams show how entities have

common characteristics.

 A stimulus-response model: A stimulus-response model, or state transition

diagram, shows how the system reacts to internal and external events.

 Q.4 a. In respect of the sub-system interface specification, give the structure

of an object specification and discuss the different components of the

body of the specification. (6)

AC63/AT63 SOFTWARE ENGINEERING JUN 2015

© IETE 5

Answer:

The structure of an object specification is shown in figure 4(a). The body of the

specification has four components.

1. An introduction that declares the sort (the type name) of the entity being specified. A

sort is the name of a set of objects with common characteristics. It is similar to a type in a

programming language. The introduction may also include an ‘imports’ declaration,

where the names of specifications defining other sorts are declared. Importing a

specification makes these sorts available for use.

2. A description part, where the operations are described informally. This makes the

formal specification easier to understand. The formal specification complements this

description by providing an unambiguous syntax and semantics for the type operations.

3. The signature part defines the syntax of the interface to the object class or abstract data

type. The names of the operations that are defined, the number and sorts of their

parameters, and the sort of operation results are described in the signature.

4. The axioms part defines the semantics of the operations by defining a set of axioms that

characterise the behaviour of the abstract data type. These axioms relate the operations

used to construct entities of the defined sort with operations used to inspect its values.

Figure 4(a) The structure of an algebraic specification

 b. What is Pair Programming? What are the advantages of pair

programming? (5)

Answer:

Pair programming is a concept in which programmers work in pairs to develop the

software. They actually sit together at the same workstation to develop the software.

Development does not actually involve the same pair of people working together. Rather,

the idea is that pairs are created dynamically so that all team members may work with

other members in a programming pair during the development process.

The use of pair programming has a number of advantages:

 It supports the idea of common ownership and responsibility for the system. This

reflects Weinberg’s ides of egoless programming where the software is owned by

the team as whole and individuals are not held responsibility for problems with

the code. Instead, the team has collective responsibility for resolving these

problems.

 It acts as an informal review process because each line of code is looked at by at

least two people. Code inspections and reviews are very successful in discovering

a high percentage of software errors. However, they are time consuming to

AC63/AT63 SOFTWARE ENGINEERING JUN 2015

© IETE 6

organise and, typically, introduce delays into the development process. While pair

programming is a less formal process that probably doesn’t find so many errors, it

is a much cheaper inspection process than formal program inspections.

 It helps support refactoring, which is a process of software improvement. A

principle of extreme programming (XP) is that the software should be constantly

refactored. That is, parts of the code should be rewritten to improve their clarity or

structure. The difficulty of implementing this in a normal development

environment is that this is effort that is expended for long-term benefit, and an

individual who practices refactoring may be judged less efficient than one who

simply carries on developing code. Where pair programming and collective

ownership are used, others gain immediately from the refactoring so they are

likely to support the process.

 c. Differentiate between evolutionary and throw-away prototyping. (5)

Answer:

 Q.5 a. What is client-server model? What are the major components of this

model? (5)

Answer:

The client–server architectural model is a system model where the system is organized as

a set of services and associated servers and clients that access and use the services. The

major components of this model are:

1. A set of servers that offer services to other sub-systems. Examples of servers are print

servers that offer printing services, file servers that offer file management services and a

compile server, which offers programming language compilation services.

2. A set of clients that call on the services offered by servers. These are normally sub-

systems in their own right. There may be several instances of a client program executing

concurrently.

3. A network that allows the clients to access these services. This is not strictly necessary

as both the clients and the servers could run on a single machine. In practice, however,

most client–server systems are implemented as distributed systems.

Clients may have to know the names of the available servers and the services that they

provide. However, servers need not know either the identity of clients or how many

clients there are. Clients access the services provided by a server through remote

procedure calls using a request-reply protocol such as the http protocol used in the

WWW. Essentially, a client makes a request to a server and waits until it receives a reply.

 b. Draw the structure of a CORBA-based distributed application based

on OMG’s vision of a distributed application and discuss the various

components proposed in the distributed application. (6)

Answer:

The OMG’s vision of a distributed application is shown in figure 5(b). This proposes that

a distributed application should be made up of a number of components:

1. Application objects that are designed and implemented for this application.

AC63/AT63 SOFTWARE ENGINEERING JUN 2015

© IETE 7

2. Standard objects that are defined by the OMG for a specific domain. These domain

object standards cover finance/insurance, electronic commerce, healthcare, and a number

of other areas.

3. Fundamental CORBA services that provide basic distributed computing services such

as directories and security management.

4. Horizontal CORBA facilities such as user interface facilities, system management

facilities, and so on. The term horizontal facilities suggests that these facilities are

common to many application domains and the facilities are therefore used in many

different applications.

Figure 5(b) The structure of a CORBA-based distributed application

 c. Write the advantages and disadvantages of broadcast model

approach. (5)

Answer:

The advantage of the broadcast approach is that evolution is relatively simple. A new

sub-system to handle particular classes of events can be integrated by registering its

events with the event handler. Any sub-system can activate any other sub-system without

knowing its name or location. The sub-systems can be implemented on distributed

machines. This distribution is transparent to other sub-systems.

The disadvantage of this model is that sub-systems don’t know if or when events will be

handled. When a sub-system generates an event it does not know which other sub-

systems have registered an interest in that event. It is quite possible for different sub-

systems to register for the same events. This may cause conflicts when the results of

handling the event are made available.

 Q.6 a. What do you mean by component composition? What are the

different types of component composition? What are the different

situations of incompatibility occurred when components are developed

independently? (2+3+3)

Answer:

Component composition is the process of assembling components to create a system. If

we assume a situation where reusable components are available, then most systems will

be constructed by composing these reusable components with each other, with specially

written components and with the component support infrastructure provided by the model

framework. This infrastructure provides facilities to support component communication

and horizontal services such as user interface services, transaction management,

AC63/AT63 SOFTWARE ENGINEERING JUN 2015

© IETE 8

concurrency and security. The ways in which components are integrated with this

infrastructure are documented for each component model.

Composition is not a simple operation; there are a number of types as shown in figure

6(a):

1. Sequential composition This occurs when, in the composite component, the constituent

components are executed in sequence. It corresponds to situation (a) in figure 6(a), where

the provides interfaces of each component are composed. Some extra code is required to

make the link between the components.

2. Hierarchical composition This occurs when one component calls directly on the

services provided by another component. It corresponds to a situation where the provides

interface of one component is composed with the requires interface of another

component. This is situation (b) in figure 6(a).

3. Additive composition This occurs when the interfaces of two or more components are

put together (added) to create a new component. The interfaces of the composite

component are created by putting together all of the interfaces of the constituent

components, with duplicate operations removed if necessary. This corresponds to

situation (c) in figure 6(a).

You might use all the forms of component composition when creating a system. In all

cases, you may have to write ‘glue code’ that links the components. For example, for

sequential composition, the output of component A typically becomes the input to

component B. You need intermediate statements that call component A, collect the result

and then call component B with that result as a parameter.

When you write components especially for composition, you design the interfaces of

these components so that they are compatible. You can therefore easily compose these

components into a single unit. However, when components are developed independently

for reuse, you will often be faced with interface incompatibilities where the interfaces of

the components that you wish to compose are not the same. Three types of

incompatibility can occur:

1. Parameter incompatibility The operations on each side of the interface have the same

name but their parameter types or the number of parameters are different.

2. Operation incompatibility The names of the operations in the provides and requires

interfaces are different.

3. Operation incompleteness The provides interface of a component is a subset of the

requires interface of another component or vice versa.

Figure 6(a) Types of component composition

AC63/AT63 SOFTWARE ENGINEERING JUN 2015

© IETE 9

 b. What are the key factors that one should consider while planning for

software reuse? (8)

Answer:

Following are the key factors that should be considered while planning for software

reuse:

 The development schedule for the software: If the software has to be developed

quickly, one should try to reuse off-the-shelf systems rather than individual

components. These are large-grain reusable assets. Although the fit to

requirements may be imperfect, this approach minimises the amount of

development required.

 The expected software lifetime: If developing a long-lifetime system, one should

focus on the maintainability of the system. In those circumstances, one should not

just think about the immediate possibilities of reuse but also the long term

implications. They will have to adapt the system to new requirements, which will

probably mean making changes to components and how they are used. If one has

do not access to the source code, you should probably avoid using components

and systems from external suppliers; you cannot be sure that these suppliers will

be able to continue supporting the reused software.

 The background, skills and experience of the development team: All reuse

technologies are fairly complex and need quite a lot of time to understand and use

them effectively. Therefore, if the development team has skills in a particular

area, this is probably where you should focus.

 The criticality of the software and its non-functional requirements: For a critical

system that has to be certified by an external regulator, one has to create a

dependability case for the system. This is difficult if you don’t have access to the

source code of the software. It the software has stringent performance

requirements, it may be impossible to use strategies such as reuse through

program generators. These systems tend to generate relatively inefficient code.

 The application domain: In some application domains, such as manufacturing

and medical information systems, there are several generic products that may be

reused by configuring them to a local situation. If working in such domain, one

should always consider these an option.

 The platform on which the system will run: Some components models, such as

COM/Active X, are specific to Microsoft platforms. If you are developing on such

a platform, this may be the most appropriate approach. Similarly, generic

application systems may be platform-specific and may only be able to reuse these

if your system is designed for the same platform.

 Q.7 a. Define dependable process. What are the characteristics of

dependable process? (2+4)

Answer:

Dependable software processes are processes that are geared to fault avoidance and fault

detection. Dependable processes are well defined and repeatable, and include a spectrum

of verification and validation activities. A well-defined process is a process that has been

standardised and documented. A repeatable process is one that does not rely on individual

interpretation and judgement. Irrespective of the people involved in the process, the

AC63/AT63 SOFTWARE ENGINEERING JUN 2015

© IETE 10

organisation can be confident that the process will be successful. A dependable process

should always include well-planned, comprehensive verification and validation activities

whose aim is to ensure residual faults in the software are discovered before it is deployed.

The essential characteristics of dependable processes are as follows:

 Documentable: The process should have a defined process model that sets out the

activities in the process and the documentation that is to be produced during these

activities.

 Standardised: A comprehensive set of software development standards that define

how the software is to be produced and documented should be available.

 Auditable: The process should be understandable by people apart from process

participants who can check that process standards are being followed and make

suggestions for process improvement.

 Diverse: The process should include redundant and diverse verification and

validation activities.

 Robust: The process should be able to recover from failures of individual process

activities.

 b. What do you mean by user integration? What are the different styles

in which forms of interaction can be classified? Give one advantage,

disadvantage and an example of each style. (2+4+4)

Answer:

User integration means issuing commands and associated data to the computer system.

On early computers, the only way to do this was through a command-line interface, and a

special-purpose language was used to communicate with the machine.

Shneiderman has classified the forms of interaction into five primary styles:

1. Direct manipulation: The user interacts directly with objects on the screen. Direct

manipulation usually involves a pointing device (a mouse, a stylus, a trackball or,

on touch screens, a finger) that indicates the object to be manipulated and the

action, which specifies what should be done with that object. For example, to

delete a file, you may click on an icon representing that file and drag it to a trash

can icon.

2. Menu selection: The user selects a command from a list of possibilities (a menu).

The user may also select another screen object by direct manipulation, and the

command operates on that object. In this approach, to delete a file, you would

select the file icon then select the delete command.

3. Form fill-in: The user fills in the fields of a form. Some fields may have

associated menus, and the form may have action ‘buttons’ that, when pressed,

cause some action to be initiated.

4. Command language: The user issues a special command and associated

parameters to instruct the system what to do. To delete a file, you would type a

delete command with the filename as a parameter.

5. Natural language: The user issues a command in natural language. This is

usually a front end to a command language; the natural language is parsed and

AC63/AT63 SOFTWARE ENGINEERING JUN 2015

© IETE 11

translated to system commands. To delete a file, you might type ‘delete the file

named @@@’.

Interaction

Style

Advantage Disadvantage Application

examples

Direct

manipulation

Fast and intuitive

interaction

Easy to learn

May be hard to implement

Only suitable where there is

a visual metaphor for tasks

and objects.

Video games

CAD systems

Menu

selection

Avoids user error

Little typing required

Slow for inexperienced

users

Can become complex if

many menu options

Most general

purpose systems

Form fill-in Simple data entry Takes up a lot of screen

space

Causes problems where user

options do match the form

fields

Stock control

Personal loan

processing

Command

language

Powerful and flexible Hard to learn

Poor error management

Operating systems

Command and

control systems

Natural

language

Accessible to causal

users

Easily extended

Requires more typing

Natural language

understanding systems are

unreliable

Information

retrieval systems

 Q.8 a. What do you mean by test case design? What approaches can be

taken for test case design? (5)

Answer:

AC63/AT63 SOFTWARE ENGINEERING JUN 2015

© IETE 12

 b. What is software testing workbench? With the help of suitable figure,

discuss some of the tools that might be included in such a testing

workbench? (6)

Answer:

A software testing workbench is an integrated set of tools to support the testing process.

In addition to testing frameworks that support automated test execution, a workbench

may include tools to simulate other parts of the system and to generate system test data.

Figure 8(b) shows some of the tools that might be included in such a testing workbench:

1. Test manager: Manages the running of program tests. The test manager keeps track of

test data, expected results and program facilities tested. Test automation frameworks such

as JUnit are examples of test managers.

2. Test data generator: Generates test data for the program to be tested. This may be

accomplished by selecting data from a database or by using patterns to generate random

data of the correct form.

3. Oracle: Generates predictions of expected test results. Oracles may either be previous

program versions or prototype systems. Back-to-back testing involves running the oracle

and the program to be tested in parallel.

4. File comparator: Compares the results of program tests with previous test results and

reports differences between them. Comparators are used in regression testing where the

results of executing different versions are compared. Where automated tests are used, this

may be called from within the tests themselves.

5. Report generator: Provides report definition and generation facilities for test results.

6. Dynamic analyser: Adds code to a program to count the number of times each

statement has been executed. After testing, an execution profile is generated showing

how often each program statement has been executed.

7. Simulator: Different kinds of simulators may be provided. Target simulators simulate

the machine on which the program is to execute. User interface simulators are script-

AC63/AT63 SOFTWARE ENGINEERING JUN 2015

© IETE 13

driven programs that simulate multiple simultaneous user interactions. Using simulators

for I/O means that the timing of transaction sequences is repeatable.

When used for large system testing, tools have to be configured and adapted for the

specific system that is being tested.

Figure 8(b) A testing workbench

 c. What is a configuration management plan? Briefly describe its

sections. (5)

Answer:

 Q.9 a. Describe the key stages of software measurement process that may be

part of a quality control process. (8)

Answer:

AC63/AT63 SOFTWARE ENGINEERING JUN 2015

© IETE 14

A software measurement process that may be part of a quality process is shown in figure

9(a) below. Each of the components of the system is analysed separately, and the values

of the metric compared both with each other and, perhaps, with historical measurement

data collected on previous projects. Anomalous measurements should be used to focus

the quality assurance effort on components that may have quality problems.

The key stages in this process are:

 Choose measurements to be made: The questions that the measurement is

intended to answer should be formulated and the measurements required to

answer these questions defined. Measurements that are not directly relevant to

these questions need not be collected. Basili’s GQM (Goal-Question-Metric)

paradigm is a good approach to use when deciding what data is to be collected.

 Select components to be assessed: It may not be necessary or desirable to assess

metric values for all of the components in a software system. In some cases, you

can select a representative selection of components for measurement. In others,

components that are particularly critical, such as core components that are in

almost constant use, should be assessed.

 Measure component characteristics: The selected components are measured and

the associated metric values computed. This normally involves processing the

component representation (design, code, etc.) using an automated data collection

tool. This tool may be specially written or may already be incorporated in CASE

tools that are used in an organisation.

 Identify anomalous measurements: Once the component measurements have

been made, you should compare them to each other and to previous measurements

that have been recorded in a measurement database. You should look for

unusually high or low values for each metric, as these suggest that there could be

problems with the component exhibiting these values.

 Analyse anomalous components: Once components that have anomalous values

for particular metrics have been identified, you should examine these components

to decide whether the anomalous metric values mean that the quality of the

component is compromised. An anomalous metric value for complexity does not

necessarily mean a poor quality component. There may be some other reason for

the high value and it may not mean that there are component quality problems.

Analyse

anomalous

components

Choose

measurements

to be made

Select

components to

be assessed

Identify

anomalous

measurements

Measure

component

characteristics

AC63/AT63 SOFTWARE ENGINEERING JUN 2015

© IETE 15

Figure 9(a) The process of product measurement

 b. What are the types of standards that may be established as part of the

quality assurance process? Why these standards are important? Give

some examples of standards that may be included in standards

handbook prepared by quality assurance team. (3+3+2)

Answer:

The two types of standards that may be established as part of the quality assurance

process are:

1. Product standards: These standards apply to the software product being developed.

They include document standards, such as the structure of requirements documents;

documentation standards, such as a standard comment header for an object class

definition; and coding standards that define how a programming language should be

used.

2. Process standards: These standards define the processes that should be followed

during software development. They may include definitions of specification, design and

validation processes and a description of the documents that should be written in the

course of these processes.

Software standards are important for several reasons:

1. They are based on knowledge about the best or most appropriate practice for the

company. This knowledge is often only acquired after a great deal of trial and error.

Building it into a standard helps the company avoid repeating past mistakes. Standards

capture wisdom that is of value to the organisation.

2. They provide a framework for implementing the quality assurance process. Given that

standards encapsulate best practice, quality assurance involves ensuring that appropriate

standards have been selected and are used.

3. They assist in continuity where work carried out by one person is taken up and

continued by another. Standards ensure that all engineers within an organization adopt

the same practices. Consequently, learning effort when starting new work is reduced.

Quality assurance teams that are developing standards for a company should normally

base their organisational standards on national and international standards. Using these

standards as a starting point, the quality assurance team should draw up a standards

‘handbook’. This should define the standards that are needed by their organisation.

Examples of standards that might be included in such a handbook are shown below:

Product standards Process standards

Design review form Design review conduct

Requirements document structure Submission of documents to CM

Method header format Version release process

Java programming style Project plan approval process

Project plan format Change control process

Change request form Test recording process

AC63/AT63 SOFTWARE ENGINEERING JUN 2015

© IETE 16

TEXT BOOK

I. Software Engineering, Ian Sommerville, 7th edition, Pearson Education, 2004 (TB-I)

