
AC61/AT61/AC112/AT112 DBMS JUN 2015

© IETE 1

 Q.2 a. A database is being constructed to keep track of the employees, customers and

other entities of the banking system. Design an E-R schema diagram for this

application and also list corresponding relation, attributes, primary keys using

your own assumption. (10)

Answer: E-R Diagram for Bank [(8 marks for ER Diagram, below) + (2 marks for explanation)]

Bank

Branch

Customer

Loan Account

Name

Account Type

Account No

Branch#

Loan Type

Loan#

Customer#

Name

Address

Name

Address

AddressBank Code

Telephone#

has

Held By
Availed

By

MaintainsOffers

1

N

1

N

1

N

M

N

M

N

Branch

 b. List out the reasons when not to use DBMS. Also state under what circumstances,

regular files are more desirable to use. (6)

Answer: Refer article 1.8, page 26 of Text Book-I

Address

AC61/AT61/AC112/AT112 DBMS JUN 2015

© IETE 2

 Q.3 a. Explain about primary key, super key, candidate key, alternate key using suitable

example. (8)

Answer:
* Alternate key - An alternate key is any candidate key which is not selected to be the primary key
* Candidate key - A candidate key is a field or combination of fields that can act as a primary key field
for that table to uniquely identify each record in that table. For Eg: The table:
Emloyee(Name,Address,Ssn,Employee_Id

primary_key
,Phone_ext) In the above example Ssn no. and

employee identity are candidate keys.
 * Compound key - compound key (also called a composite key or concatenated key) is a key that
consists of 2 or more attributes.
 * Primary key - a primary key is a value that can be used to identify a unique row in a table. Attributes
are associated with it. Examples of primary keys are Social Security numbers (associated to a specific
person) or ISBNs (associated to a specific book). In the relational model of data, a primary key is a
candidate key chosen as the main method of uniquely identifying a tuple in a relation. For Eg:
Emloyee(Name,Address,Ssn,Employee_Id

primary_key
,Phone_ext)

* Superkey - A superkey is defined in the relational model as a set of attributes of a relation variable
(relvar) for which it holds that in all relations assigned to that variable there are no two distinct tuples
(rows) that have the same values for the attributes in this set. Equivalently a superkey can also be
defined as a set of attributes of a relvar upon which all attributes of the relvar are functionally
dependent. For Eg: Emloyee(Name,Address,Ssn,Employee_Id

primary_key
,Phone_ext)

<Ssn,Name,Address> <Ssn,Name> <Ssn> All the above are super keys.
 * Foreign key - a foreign key (FK) is a field or group of fields in a database record that points to a key
field or group of fields forming a key of another database record in some (usually different) table.
Usually a foreign key in one table refers to the primary key (PK) of another table. This way references
can be made to link information together and it is an essential part of database normalization. For Eg:

For a Student.... School(Name,Address,Phone,School_Reg_no_primary_key)

 b. List four significant differences between a file-processing system and a DBMS.(4)

Answer:
Some main differences between a database management system and a file-processing system are:
• Both systems contain a collection of data and a set of programs which access that data. A

database management system coordinates both the physical and the logical access to the data,
whereas a file-processing system coordinates only the physical access.

• A database management system reduces the amount of data duplication by ensuring that a

physical piece of data is available to all programs authorized to have access to it, where as

data written by one program in a file processing system may not be readable by another

program.

• A database management system is designed to allow flexible access to data (i.e., queries),

whereas a file-processing system is designed to allow predetermined access to data (i.e.,

compiled programs).

• A database management system is designed to coordinate multiple users accessing the same

data at the same time. A file-processing system is usually designed to allow one or more

programs to access different data files at the same time. In a file-processing system, a file can

be accessed by two programs concurrently only if both programs have read only access to the

file.

AC61/AT61/AC112/AT112 DBMS JUN 2015

© IETE 3

 c. Which of the following plays an important role in representing information about

the real world in a database? Explain briefly. (4)
 (i) The data definition language

 (ii) The data manipulation language

Answer:
Let us discuss the choices in turn.
The data definition language is important in representing information because it is used to describe
external and logical schemas.
The data manipulation language is used to access and update data; it is not important for representing
the data. (Of course, the data manipulation language must be aware of how data is represented, and
reflects this in the constructs that it supports.)

 Q.4 a. Consider the following two sets of functional dependencies F= {A→C, AC→D,

E→AD, E→H} and G = {A→CD, E→AH}. Check whether or not they are

equivalent. (6)

Answer:

To show equivalence, we prove that G is covered by F and F is covered by G.

Proof that G is covered by F:

{A} + = {A, C, D} (with respect to F), which covers A→CD in G

{E} + = {E, A, D, H, C} (with respect to F), which covers E→AH in G

Proof that F is covered by G:

{A} + = {A, C, D} (with respect to G), which covers A→C in F

{A, C} + = {A, C, D} (with respect to G), which covers AC→D in F

{E} + = {E, A, H, C, D} (with respect to G), which covers E→AD and E→H in F

 b. What is a minimal set of functional dependencies? Does every set of dependencies

have a minimal equivalent set? Give an algorithm for finding a minimal cover G

for F. (6)

Answer:
A set of functional dependencies F is minimal if it satisfies the following conditions:
1. Every dependencies in F has a single attribute for its right –hand side.
2. We cannot replace any dependency X→A in F with a dependency Y→A, where Y is a proper subset
of X, and still have a set of dependencies that is equivalent to F.
3. We cannot remove any dependency from F and still have a set of dependencies that is equivalent to
F.

We can think of a minimal set of dependencies as being a set of dependencies in a standard or

canonical form and with no redundancies. Condition 1 ensures that every dependency is in

canonical form with a single attribute on the right-hand side. Conditions 2 and 3 ensures that there

is no redundancies in the dependencies either by having redundant attributes on the left-hand side of

a dependency, or by having dependency that can be inferred from the remaining FDs in F. A

minimal cover of a set of functional dependencies that is equivalent to F. unfortunately, there can be

several minimal covers for a set of functional dependencies. Algorithm: Finding a minimal cover G

for F

1. Set G: = F.

AC61/AT61/AC112/AT112 DBMS JUN 2015

© IETE 4

2. Replace each functional dependency X→{A
1
, A

2
…… A

n
} in G by the n functional

dependencies
X→ A

1
, X→ A

2
…… X→ A

n.

3. For each functional dependency X→A in G for each attribute B that is an element of X
if ((G-{X→A} U {X –{B}) →A}) is equivalent to G.

4. For each remaining functional dependency X→A in G

if (G-{X→A}) is equivalent to G, then remove X→A from G.

 c. What is meant by a safe expression in relational calculus? (4)

Answer:
Whenever we use universal quantifiers, existential quantifiers, or negation of predicates in a calculus
expression, we must make sure that the resulting expression makes sense. A safe expression in
relational calculus is one that is guaranteed to yield a finite number of tuples as its result; otherwise, the
expression is called unsafe. For example, the expression {t | not (EMPLOYEE(t))} is unsafe because it
yields all tuples in the universe that are not EMPLOYEE tuples, which are infinitely numerous. If we
follow the rules, we will get a safe expression when using universal quantifiers. We can define safe
expressions more precisely by introducing the concept of the domain of a tuple relational calculus expression:
This is the set of all values that either appear as constant values in the expression or exist in any tuple
of the relations referenced in the expression. The domain of {t | not(EMPLOYEE(t))} is the set of all
attribute values appearing in some tuple of the EMPLOYEE relation (for any attribute). An expression
is said to be safe if all values in its result are from the domain of the expression. Notice that the result
of {t | not(EMPLOYEE(t))} is unsafe, since it will, in general, include tuples (and hence values) from
outside the EMPLOYEE relation; such values are not in the domain of the expression.

 Q.5 a. Employee (, street, city) (6)

Works (, company_name, salary)

Company (, city)

 Manages (, manager_name)

 Consider the given relational database. Give an expression in SQL for each of the

following queries:

 (i) Give all employees of First Bank Corporation a 10 percent raise.

 (ii) Give all managers of First Bank Corporation a 10 percent raise.

 (iii) Delete all tuples in the works relation for employees of Small Bank

Corporation.

Answer:

i. Give all employees of First Bank Corporation a 10-percent raise. (The solution assumes that each

person works for at most one company.)

update works (2 marks)

set salary = salary * 1.1

where company name = ’First Bank Corporation’

ii. Give all managers of First Bank Corporation a 10-percent raise. (2 marks)

update works

set salary = salary * 1.1

where employee name in (select manager name from manages)

AC61/AT61/AC112/AT112 DBMS JUN 2015

© IETE 5

and company name = ’First Bank Corporation’

iii. Delete all tuples in the works relation for employees of Small Bank Corporation.

(2 marks)
delete works

where company name = ’Small Bank Corporation’

 b. Give a relational-algebra expression for each of the following queries: (6)

(i) Find the company with the most employees.

(ii) Find the company with the smallest payroll.

(iii) Find those companies whose employees earn a higher salary, on average, than

the average salary at First Bank Corporation.

Answer:

 c. List any four Codd’s rule for relational database. (4)

Answer:
The Codd’s 12 rules are based on following
Rule 0 by which a database could be evaluated to see how relational it is. The twelve rules of Codd are
as follows;
1. All information in a relational database is represented explicitly at the logical level and in exactly one
way.
2. Each and every atomic value in a relational database is guaranteed to be logically accessible by
resorting to a combination of table name,primary key value and column value.
3. Null values are supported in a fully relational DBMS for representing missing information in a
systematic way, independent of data type.
4. Users and programmers need only know one data language to operate the entire database.
5. A relational database must support at least language which should have: data definition,view
definition,data manipulation,integrity constraints,authorization,transaction boundaries.

All views that are theoretically updatable are also updatable by the system.

 Q.6 a. Explain Write-Ahead Logging (WAL). (8)

Answer:

AC61/AT61/AC112/AT112 DBMS JUN 2015

© IETE 6

The default method by which SQLite implements atomic commit and rollback is a rollback journal.

Beginning with version 3.7.0, a new "Write-Ahead Log" option (hereafter referred to as "WAL") is

available.

There are advantages and disadvantages to using WAL instead of a rollback journal. Advantages

include:

1. WAL is significantly faster in most scenarios.

2. WAL provides more concurrency as readers do not block writers and a writer does not block

readers. Reading and writing can proceed concurrently.

3. Disk I/O operations tends to be more sequential using WAL.

4. WAL uses many fewer fsync() operations and is thus less vulnerable to problems on

systems where the fsync() system call is broken.

But there are also disadvantages:

1. WAL normally requires that the VFS support shared-memory primitives. (Exception: WAL

without shared memory) The built-in unix and windows VFSes support this but third-party

extension VFSes for custom operating systems might not.

2. All processes using a database must be on the same host computer; WAL does not work

over a network filesystem.

3. Transactions that involve changes against multiple ATTACHed databases are atomic for

each individual database, but are not atomic across all databases as a set.

4. It is not possible to change the database page size after entering WAL mode, either on an

empty database or by using VACUUM or by restoring from a backup using the backup API.

You must be in a rollback journal mode to change the page size.

5. It is not possible to open read-only WAL databases. The opening process must have write

privileges for "-shm" wal-index shared memory file associated with the database, if that file

exists, or else write access on the directory containing the database file if the "-shm" file

does not exist.

6. WAL might be very slightly slower (perhaps 1% or 2% slower) than the traditional rollback-

journal approach in applications that do mostly reads and seldom write.

7. There is an additional quasi-persistent "-wal" file and "-shm" shared memory file associated

with each database, which can make SQLite less appealing for use as an application file-

format.

8. There is the extra operation of checkpointing which, though automatic by default, is still

something that application developers need to be mindful of.

9. WAL works best with smaller transactions. WAL does not work well for very large

transactions. For transactions larger than about 100 megabytes, traditional rollback journal

modes will likely be faster. For transactions in excess of a gigabyte, WAL mode may fail

with an I/O or disk-full error. It is recommended that one of the rollback journal modes be

used for transactions larger than a few dozen megabytes.

How WAL Works

The traditional rollback journal works by writing a copy of the original unchanged database content

into a separate rollback journal file and then writing changes directly into the database file. In the

event of a crash or ROLLBACK, the original content contained in the rollback journal is played

back into the database file to revert the database file to its original state. The COMMIT occurs

when the rollback journal is deleted.

http://www.sqlite.org/atomiccommit.html
http://www.sqlite.org/lockingv3.html#rollback
http://www.sqlite.org/releaselog/3_7_0.html
http://www.sqlite.org/vfs.html
http://www.sqlite.org/wal.html#noshm
http://www.sqlite.org/wal.html#noshm
http://www.sqlite.org/wal.html#noshm
http://www.sqlite.org/lang_attach.html
http://www.sqlite.org/lang_vacuum.html
http://www.sqlite.org/backup.html
http://www.sqlite.org/wal.html#readonly
http://www.sqlite.org/fileformat2.html#walindexformat
http://www.sqlite.org/whentouse.html#appfileformat
http://www.sqlite.org/whentouse.html#appfileformat
http://www.sqlite.org/wal.html#ckpt
http://www.sqlite.org/lang_transaction.html
http://www.sqlite.org/lang_transaction.html

AC61/AT61/AC112/AT112 DBMS JUN 2015

© IETE 7

Checkpointing

Of course, one wants to eventually transfer all the transactions that are appended in the WAL file

back into the original database. Moving the WAL file transactions back into the database is called a

"checkpoint".

Another way to think about the difference between rollback and write-ahead log is that in the

rollback-journal approach, there are two primitive operations, reading and writing, whereas with a

write-ahead log there are now three primitive operations: reading, writing, and checkpointing.

Concurrency

When a read operation begins on a WAL-mode database, it first remembers the location of the last

valid commit record in the WAL. Call this point the "end mark". Because the WAL can be growing

and adding new commit records while various readers connect to the database, each reader can

potentially have its own end mark. But for any particular reader, the end mark is unchanged for the

duration of the transaction, thus ensuring that a single read transaction only sees the database

content as it existed at a single point in time.

When a reader needs a page of content, it first checks the WAL to see if that page appears there,

and if so it pulls in the last copy of the page that occurs in the WAL prior to the reader's end mark.

If no copy of the page exists in the WAL prior to the reader's end mark, then the page is read from

the original database file. Readers can exist in separate processes, so to avoid forcing every reader

to scan the entire WAL looking for pages (the WAL file can grow to multiple megabytes,

depending on how often checkpoints are run), a data structure called the "wal-index" is maintained

in shared memory which helps readers locate pages in the WAL quickly and with a minimum of

I/O. The wal-index greatly improves the performance of readers, but the use of shared memory

means that all readers must exist on the same machine. This is why the write-ahead log

implementation will not work on a network filesystem.

Performance Considerations

Write transactions are very fast since they only involve writing the content once (versus twice for

rollback-journal transactions) and because the writes are all sequential. Further, syncing the content

to the disk is not required, as long as the application is willing to sacrifice durability following a

power loss or hard reboot. (Writers sync the WAL on every transaction commit if PRAGMA

synchronous is set to FULL but omit this sync if PRAGMA synchronous is set to NORMAL.)

On the other hand, read performance deteriorates as the WAL file grows in size since each reader

must check the WAL file for the content and the time needed to check the WAL file is proportional

to the size of the WAL file. The wal-index helps find content in the WAL file much faster, but

performance still falls off with increasing WAL file size. Hence, to maintain good read performance

it is important to keep the WAL file size down by running checkpoints at regular intervals.

The checkpointer makes an effort to do as many sequential page writes to the database as it can (the

pages are transferred from WAL to database in ascending order) but even then there will typically

be many seek operations interspersed among the page writes. These factors combine to make

checkpoints slower than write transactions.

 b. Describe the optimistic concurrency control techniques. (4)

Answer:

In optimistic concurrency control techniques, also known as validation or certification

techniques, no checking is done while the transaction is executing. Several proposed concurrency

control methods use the validation technique. In this scheme, updates in the transaction are not

http://www.sqlite.org/pragma.html#pragma_synchronous
http://www.sqlite.org/pragma.html#pragma_synchronous
http://www.sqlite.org/pragma.html#pragma_synchronous
http://www.sqlite.org/pragma.html#pragma_synchronous

AC61/AT61/AC112/AT112 DBMS JUN 2015

© IETE 8

applied directly to the database items until the transaction reaches its end. During transaction

execution, all updates are applied to local copies of the data items that are kept for the transaction.

At the end of transaction execution, a validation phase checks whether any of the transaction’s

updates violate serializability.

Certain information needed by the validation phase must be kept by the system. If

serializability is not violated, the transaction is committed and the database is updated from the

local copies; otherwise, the transaction is aborted and then restarted later.

There are three phases for this concurrency control protocol:

1. Read phase: A transaction can read values of committed data items from the database.

However, updates are applied only to local copies (versions) of the data items kept in the

transaction workspace.

2. Validation phase: Checking is performed to ensure that serializability will not be violated if the

transaction updates are applied to the database.

3. Write phase: If the validation phase is successful, the transaction updates are applied to the

database; otherwise, the updates are discarded and the transaction is restarted.

 c. During the execution of a transaction, it passes through several states, until it

finally commits or aborts. List any two possible sequences of states through which

a transaction may pass. Explain why each state transition may occur. (4)

Answer:
a. active –partially committed-committed. This is the normal sequence a successful transaction will
follow. After executing all its statement it enters the partially committed state.
b. active –partially committed –aborted. After executing the last statement of the transaction it enter
the partially committed state. But before enough recovery information is written to disk, a hardware
failure may occur destroying the memory contents. In this case the change which to disk, a hardware
failure may occur destroying the memory contents. In this case the change which it made to the
database are undone, and transaction enters the aborted state.
c. Active – failure –aborted. After the transaction start. if it is discovered at some points that normal
execution cannot continue (either due to internet program errors or external errors) , it enters the
failed state .it is then rolled back , after which it enters the enters the aborted state.

 Q.7 a. How the schedules are characterized based on serializability? (8)

Answer:

Suppose that two users-two airline reservation clerks submit to the DBMS transactions T1 and T2

at approximately the same time.

If no interleaving of operations is permitted, there are only two possible outcomes:

1. Execute all the operations of transaction T1 (in sequence) followed by all the operations of

transaction T2 (in sequence).

2. Execute all the operations of transaction T2 (in sequence) followed by all the operations

oftransaction T1(in sequence).

These alternatives are shown in Figure a and b, respectively. If interleaving of operations is

allowed, there will be many possible orders in which the system can execute the individual

operations of the transactions. Two possible schedules are shown in Figure c. The concept of

AC61/AT61/AC112/AT112 DBMS JUN 2015

© IETE 9

serializability of schedules is used to identify which schedules are correct when transaction

executions have interleaving of their operations in the schedules. This section defines serializability

and discusses how it may be used in practice.

Serial, Nonserial, and Conflict-Serializable Schedules

Schedules A and B in Figure a and b are called serial because the operations of each transaction are

executed consecutively, without any interleaved operations from the other transaction. In a serial

schedule, entire transactions are performed in serial order: T1 and then T2 in Figure a, and T2 and

then T1 in Figure b. Schedules C and D in Figure c are called nonserial because each sequence

interleaves operations from the two transactions. Formally, a schedule S is serial if, for every

transaction T participating in the schedule, all the operations of T are executed consecutively in the

schedule; otherwise, the schedule is called nonserial. Hence, in a serial schedule, only one

transaction at a time is active-the commit (or abort) of the active transaction initiates execution of

the next transaction. No interleaving occurs in a serial schedule.

The problem with serial schedules is that they limit concurrency or interleaving of operations. In a

serial schedule, if a transaction waits for an [/0 operation to complete, we cannot switch the CPU

AC61/AT61/AC112/AT112 DBMS JUN 2015

© IETE 10

processor to another transaction, thus wasting valuable CPU processing time. In addition, if some

transaction T is quite long, the other transactions must wait for T to complete all its operations

before commencing. Hence, serial schedules are generally considered unacceptable in practice. A

schedule S of n transactions is serializable if it is equivalent to some serial schedule of the same n

transactions. Two schedules are called result equivalent if they produce the same final state of the

database. The safest and most general approach to defining schedule equivalence is not to make any

assumption about the types of operations included in the transactions. Two schedules are said to be

conflict equivalent if the order of any two conflicting operations is the same in both schedules. If

two conflicting operations are applied in different orders in two schedules, the effect can be

different on the database or on other transactions in the schedule, and hence the schedules are not

conflict equivalent.

 b. Explain how a System Crash can be recovered using ARIES algorithm? (8)

Answer:

In computer science, Algorithms for Recovery and Isolation Exploiting Semantics, or ARIES is

a recovery algorithm designed to work with a no-force, steal database approach; it is used by IBM

DB2, Microsoft SQL Server and many other database systems.

Three main principles lie behind ARIES

 Write ahead logging: Any change to an object is first recorded in the log, and the log must

be written to stable storage before changes to the object are written to disk.

 Repeating history during Redo: On restart after a crash, ARIES retraces the actions of a

database before the crash and brings the system back to the exact state that it was in before

the crash. Then it undoes the transactions still active at crash time.

 Logging changes during Undo: Changes made to the database while undoing transactions

are logged to ensure such an action isn't repeated in the event of repeated restarts.

Logging

 For the ARIES algorithm to work a number of log records have to be created during the

operation of the database. Log entries are sequentially numbered with Sequence Numbers.

 Usually the resulting logfile is stored on so-called "stable storage", that is a storage medium

that is assumed to survive crashes and hardware failures. To gather the necessary

information for the logging two data structures have to be maintained: the dirty page table

(DPT) and the transaction table (TT).

 The dirty page table keeps record of all the pages that have been modified and not yet

written back to disc and the first Sequence Number that caused that page to become dirty.

The transaction table contains all transactions that are currently running and the Sequence

Number of the last log entry they caused.

 We create log records of the form (Sequence Number, Transaction ID, Page ID, Redo,

Undo, and Previous Sequence Number). The Redo and Undo fields keep information about

the changes this log record saves and how to undo them. The Previous Sequence Number is

a reference to the previous log record that was created for this transaction. In the case of an

aborted transaction, it's possible to traverse the log file in reverse order using the Previous

Sequence Numbers, undoing all actions taken within the specific transaction.

 Every time a transaction begins or commits we write a "Begin Transaction" entry or an "End

Of Log" entry for that transaction respectively.

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/No-force
http://en.wikipedia.org/wiki/IBM_DB2
http://en.wikipedia.org/wiki/IBM_DB2
http://en.wikipedia.org/wiki/IBM_DB2
http://en.wikipedia.org/wiki/Database_system
http://en.wikipedia.org/wiki/Database_log

AC61/AT61/AC112/AT112 DBMS JUN 2015

© IETE 11

 During a recovery or while undoing the actions of an aborted transaction a special kind of

log record is written, the Compensation Log Record (CLR), to record that the action has

already been undone. CLRs are of the form (Sequence Number, Transaction ID, Page ID,

Redo, Previous Sequence Number, and Next Undo Sequence Number). The Undo field is

omitted because that information is already stored in the original log record for that action.

Recovery
 The recovery works in three phases. The first phase, Analysis, computes all the necessary

information from the logfile. The Redo phase restores the database to the exact state at the

crash, including all the changes of uncommited transactions that were running at that point

in time. The Undo phase then undoes all uncommited changes, leaving the database in a

consistent state.

Analysis

 During the Analysis phase we restore the DPT and the TT as they were at the time of the

crash.

 We run through the logfile (from the beginning or the last checkpoint) and add all

transactions for which we encounter Begin Transaction entries to the TT. Whenever an End

Log entry is found, the corresponding transaction is removed. The last Sequence Number

for each transaction is of course also maintained.

 During the same run we also fill the dirty page table by adding a new entry whenever we

encounter a page that is modified and not yet in the DPT. This however only computes a

superset of all dirty pages at the time of the crash, since we don't check the actual database

file whether the page was written back to the storage.

Redo
 From the DPT we can compute the minimal Sequence Number of a dirty page. From there

we have to start redoing the actions until the crash, in case they weren't persisted already.

 Running through the log file we check for each entry whether the modified page is in the

DPT table and whether the Sequence Number in the DPT is smaller than the Sequence

Number of the record (i.e. whether the change in the log is newer than the last version that

was persisted). If it is we fetch the page from the database storage and check the Sequence

Number on the actual if it is smaller than the Sequence Number on the log record. That

check is necessary because the recovered DPT is only a conservative superset of the pages

that really need changes to be reapplied. Lastly we reapply the redo action and store the new

Sequence Number on the page. It is also important for recovery from a crash during the

Redo phase, as the redo isn't applied twice to the same page.

Undo

 After the Redo phase the database reflects the exact state at the crash. However the changes

of uncommited transactions have to be undone to restore the database to a consistent state.

 For that we run backwards through the log for each transaction in the TT table (those runs

can of course be combined into one) using the Previous Sequence Number fields in the

records. For each record we undo the changes (using the information in the Undo field) and

write a compensation log record to the log file. If we encounter a Begin Transaction record

we write an End Log record for that transaction.

 The compensation log records make it possible to recover during a crash that occurs during

the recovery phase. That isn't as uncommon as one might think, as it is possible for the

recovery phase to take quite long. CLRs are read during the Analysis phase and redone

during the Redo phase.

AC61/AT61/AC112/AT112 DBMS JUN 2015

© IETE 12

Checkpoints

 To avoid rescanning the whole logfile during the analysis phase it is advisable to save the

DPT and the TT regularly to the logfile, forming a checkpoint. Instead of having to run

through the whole file it is just necessary to run backwards until a checkpoint is found.

From that point it is possible to restore the DPT and the TT as they were at the time of the

crash by reading the logfile forward again. Then it is possible to proceed as usual with Redo

and Undo.

 The naive way for checkpointing involves locking the whole database to avoid changes to

the DPT and the TT during the creation of the checkpoint. Fuzzy logging circumvents that

by writing two log records. One Fuzzy Log Starts Here record and, after preparing the

checkpoint data, the actual checkpoint. Between the two records other logrecords can be

created. During recovery it is necessary to find both records to obtain a valid checkpoint.

 Q.8 (For current scheme students i.e., AC61/AT61)
 a. What do you understand by the term INDEX? Briefly describe various types of

Indexes used for records in tables. (6)

Answer:

An index is usually defined on a single field of a file, called an indexing Field. The index typically

stores each value of the index field along with a list of pointers to all disk blocks that contain a

record with that field value. The values in the index are ordered so that we can do a binary search

on the index. The index file is much smaller than the data file, so searching the index using binary

search is reasonably efficient. Multilevel indexing does away with the need for binary search at the

expense of creating indexes to the index itself! There are several types of indexes. A primary index

is an index specified on the ordering key field of an ordered file of records. An ordering key field is

used to physically order the file records on disk, and every record has a unique value for that field.

If the ordering field is not a key field that is, several records in the file can have the same value for

the ordering field another type of index, called a clustering index, can be used. A file can have at

most one physical ordering field, so it can have at most one primary index or one clustering index,

but not both.

A third type of index, called a secondary index, can be specified on any non-ordering field

of a file. A file can have several secondary indexes in addition to its primary access method.

 b. What is Partitioned Hashing? What are its advantage and disadvantage? (6)

Answer:

Partitioned hashing is an extension of static external hashing (Section 5.9.2) that allows access on

multiple keys. It is suitable only for equality comparisons; range queries are not supported. In

partitioned hashing, for a key consisting of n components, the hash function is designed to produce

a result with n separate hash addresses. The bucket address is a concatenation of these n addresses.

It is then possible to search for the required composite search key by looking up the appropriate

buckets that match the parts of the address.

An advantage of partitioned hashing is that it can be easily extended to any number of attributes.

The bucket addresses can be designed so that high order bits in the addresses correspond to more

AC61/AT61/AC112/AT112 DBMS JUN 2015

© IETE 13

frequently accessed attributes. Additionally, no separate access structure needs to be maintained for

the individual attributes.

 The main drawback of partitioned hashing is that it cannot handle range queries on any of the

component attributes.

 c. What are the causes of bucket overflow in a hash file organization? What can be

done to reduce the occurrence of bucket overflows? (4)

 Q.8 (For New scheme students i.e., AC112/AT112)

 a. Explain specialization, generalization and constraint on spcialization and

generalization. (8)

Answer: Refer page 106 of Text Book-I

 b. What is distributed database? Explain different types of distributed database

systems in brief. (2+6)

Answer: Refer article 25.3, page 889 of Text Book-I

 Q.9 (For current scheme students i.e., AC61/AT61)
 a. Describe how to incrementally maintain the results of the following operations, on

both insertions and deletions. (8)

(i) Union and set difference

 (ii) Left outer join

AC61/AT61/AC112/AT112 DBMS JUN 2015

© IETE 14

 b. Briefly explain the different methods for implementing joins. (8)

Answer:
Different methods for implementing joins are as follows:

 Nested-loop join (brute force): For each record t in R (outer loop), retrieve every record s
from S (inner loop) and test whether the two records satisfy the join condition t[A] = s[B]
(Note 11).

 Single-loop join (using an access structure to retrieve the matching records): If an index
(or hash key) exists for one of the two join attributes—say, B of S—retrieve each record t in R,
one at a time (single loop), and then use the access structure to retrieve directly all matching
records s from S that satisfy s[B] = t[A].

 Sort–merge join: If the records of R and S are physically sorted (ordered) by value of the join
attributes A and B, respectively, we can implement the join in the most efficient way possible.
Both files are scanned concurrently in order of the join attributes, matching the records that
have the same values for A and B. If the files are not sorted, they may be sorted first by using
external sorting. In this method, pairs of file blocks are copied into memory buffers in order
and the records of each file are scanned only once each for matching with the other file—
unless both A and B are non-key attributes, in which case the method needs to be modified
slightly. In external sorting method, pairs of file blocks are copied into memory buffers in order
and the records of each file are scanned only once each for matching with the other file—
unless both A and B are non-key attributes, in which case the method needs to be modified

AC61/AT61/AC112/AT112 DBMS JUN 2015

© IETE 15

slightly. The indexes provide the ability to access (scan) the records in order of the join
attributes, but the records themselves are physically scattered all over the file blocks, so this
method may be quite inefficient, as every record access may involve accessing a different disk
block.

 Hash-join: The records of files R and S are both hashed to the same hash file, using the same
hashing function on the join attributes A of R and B of S as hash keys. First, a single pass
through the file with fewer records (say, R) hashes its records to the hash file buckets; this is
called the partitioning phase, since the records of R are partitioned into the hash buckets. In the
second phase, called the probing phase, a single pass through the other file (S) then hashes each
of its records to probe the appropriate bucket, and that record is combined with all matching
records from R in that bucket. This simplified description of hash-join assumes that the smaller
of the two files fits entirely into memory buckets after the first phase.

 Q.9 (For New scheme students i.e., AC112/AT112)

 a. Explain different type of discretionary privileges. (4)

Answer: Refer article 23.2.1, page 802 of Text Book-I

 b. Differentiate between discretionary and mandatory access control. (4)

Answer: Refer article 23.3.1, page 809 of Text Book-I

 c. What is public key infrastructure scheme? How does it provide security? (4+4)

Answer: Refer article 23.6.2, page 816 of Text Book-I

TEXT BOOK

I. Fundamentals of Database Systems, Elmasri, Navathe, Somayajulu, Gupta, Pearson

Education, 2006 (TB-I)

