
DE70/DC56 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 1

Q.2 a. Explain the three important features of object-oriented programming.

Answer:
 The three major features of OOPS are:
 (i) Encapsulation: The process of data hiding and combining data and methods in a

single logical unit is called encapsulation. In C++, encapsulation is implemented
through classes. A class in C++ consists of data and methods.

 (ii) Inheritance: A class can inherit the data and methods from another existing
class. The class getting the features is known as derived class and the class from
which the features are inherited is known as the base class. Inheritance helps in
preserving the investment in the existing code by allowing us to extend the
functionality of existing classes.

 (iii)Polymorphism: The classes belonging to the same family exhibit the same
characteristics. To implement the behaviour, we write methods. A method may
use the same name across several classes belonging to a single family; however,
actual implementation may vary across such classes. This feature of OOPS is
known as polymorphism.

 b. Write a program to display the multiplication table of the number

entered by the user.

Answer:
 #include <iostream>

using namespace std;

int main() {
 int i, n;

 cout << "Enter the number whose table is required: ";
 cin >> n;
 cout << "Table of " << n << endl;
 for (i = 1; i <= 10; i++)
 cout << n << " * " << i << " = " << n * i << endl;
 return 0;
}

 c. Compare while and do…while loops, with the help of example.
Answer:

do..while loop while loop
• The format of do.. while loop is:
 do{ ….} while(condition);
• The loop body is executed so long as

the condition is true.
• It is executed atleast once even if the

condition is false before control
enters the loop body.

• The format of while loop is:
 while(condition) { … }
• The loop body is executed so

long as the condition is true.
• It is not executed once even if

the condition is false before
control enters the loop body.

DE70/DC56 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 2

Q.3 a. Define array. Give the general syntax for declaring an array. How
we initialize an array at compile time?

Answer: Page 48, 49 to 51 of Text Book 1

 b. Define a structure of Employee with the following fields: empNo,

name and salary. Write a program to read and store the data of at
most 10 employees in an array. Also display the average salary of the
employees.

Answer:
 #include <iostream>

using namespace std;

struct employee {
 int empNo;
 char name[20];
 float salary;
};

int main() {
 employee e[10];
 int i, n;
 float sum = 0;
 cout << "How many employees? ";
 cin >> n;
 cout << "Enter the data for " << n << " employees\n";
 for (i = 0; i < n; i++) {
 cout << "\nEnter details of employee : " << i + 1 << "\nEmployee number:
";
 cin >> e[i].empNo;
 fflush(stdin);
 cout << "Name: ";
 gets(e[i].name);
 cout << "Salary: ";
 cin >> e[i].salary;
 sum += e[i].salary;
 }
 cout << "\nThe average salary of the employees is " << sum / n;
 return 0;
}

DE70/DC56 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 3

Q.4 Write short notes on the following (any FOUR):
 (i) class & objects
 (ii) friend functions
 (iii) passing parameters to a function by reference
 (iv) static data members
 (v) access modifiers

Answer:
(i) Class: Class allows us to combine data and the methods that operate on data,

under a single logical data unit. The general declaration of a class is shown below:
 class className {
 private:
 variable / function declarations;
 public:
 variable / function declarations;
 protected:
 variable / function declarations;
 };
 For example, a class for a student can be defined as follows:
 class student {
 private:
 int rollNo;
 char name[30];
 float marks;
 public:
 void input() { … }
 void output() { … }
 };

4 (ii) Friend functions: A friend function is a function that is defined outside a class but

is still allowed to access the private data of the class of which it is a friend. Friend
functions access the private data of a class through an object of the class. To treat
an external function as a friend of a class, a declaration of the function must
appear in the class with the keyword friend. The function implementation is
external to the class body and does not constitute a part of the class. For example,
the following code shows a friend function fn of a class A which is accessing its
private member x through the object a.

 class A {
 private:
 int x;
 public:
 A() { x = 10 };
 friend void fn();
 };
 void fn(A a) {

DE70/DC56 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 4

 cout << a.x;
 }

4 (iii) Passing parameters to a function by reference: If we want that the changed value

of a parameter modified within a function to be reflected back in the original
value in the calling function, we should use pass the parameter by reference
concept. To pass the variable by reference, we declare a pointer to the variable
and pass the pointer variable as a parameter to the function. When the function is
called, address of operator (&) is used along with this parameter. For example,

 void A(int *p) { *p = 10; }
 void B() {
 int x = 5;
 cout << x << endl;
 A(&x);
 cout << x << endl;
 }
 The output of the code segment will be
 5
 10

4 (iv) Static data members: There is only one copy of a static data member and it is

shared by all the objects of the class. Any change made by any object is reflected
in all the objects. The static data members are visible only within the class but
their lifetime is the entire program. Its declaration is prefixed with the keyword
static. A static data member has to be defined outside the class using the scope
resolution operator. For example,

 class A {
 private:
 static int i;
 …
 };
 int A::i = 10;

4 (v) Access modifiers: There are three access modifiers available in C++:

a. public: A public member of a class is accessible to any program code defined
inside the class, defined in an inherited class or defined outside the class.

b. private: These members are available only to the functions defined within the
class.

c. protected: A protected member of a class is accessible to any program code
defined inside the class or defined in an inherited class but not to the code
defined outside the class.

DE70/DC56 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 5

Q.5 a. Define a class Complex having a real part and an imaginary part.
Include the following functions in the class:

• A constructor to initialize the values of the members to 0
• A function to initialize the data members of the class
• Overload + operator to add two complex numbers

A function to display a complex number

Answer:
class complex {
 int r, i;
 public:
 complex() {
 r = 0;
 i = 0;
 }

 void initialize() {
 cout << "Enter the real part: ";
 cin >> r;
 cout << "Enter the imaginary part: ";
 cin >> i;
 }

 complex operator + (complex b) {
 complex c;
 c.r = r + b.r;
 c.i = i + b.i;
 return c;
 }

 void display() {
 cout << "\nThe complex number is " << r << "+" << i << "i";
 }
 };

 b. What is a destructor? What are its properties?

Answer:
 Destructors are special methods of a class that are automatically invoked when the

object is destroyed and removed from the system. These are generally required
when memory is dynamically allocated in the constructor of the class and it is
required to release it before the object is destroyed.

 The properties of a destructor are as follows:
• A destructor is a class method having the same name as the class name and is

prefixed with a tilde (~) character
• Destructor does not take any arguments

DE70/DC56 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 6

• Destructor does not return anything, not even void data type
• Destructors cannot be overloaded

Q.6 a. What is multiple level inheritance? What will be the calling sequence
for constructors and destructors for the following class definitions :
 class A{ … };
 class B : public A { … };
 class C: protected B { … };

Answer:
 Multiple level inheritance: When a class say B inherits the features from a base

class say A and some other class say C inherits the features from B, it is known as
multiple level inheritance. This can be further extended to any levels of inheritance.
At any level of inheritance, a class has features of all the classes that lie in the path
from the base of the hierarchy to that level as per the access modifiers that are used
in inheritance in the path.

 This can be shown through an example as follows:
 class A{ … };
 class B : public A { … };
 class C: protected B { … };
 Here, class C will have the features from A as well as B as per the access modifiers

(public and protected in this case) that lie in the path from A to C.

 Calling hierarchy for constructors and destructors:
 Constructor of A will be called followed by constructor of B and then finally of C.
 Destructor of C will be called followed by destructor of B and then finally of A.

 b. What are virtual inheritance? Why is it required?

Answer:
 Virtual inheritance: Virtual inheritance is used to overcome the problem faced when

multiple level inheritance and multiple inheritance are used together. For example,
consider the case below:

 class A {
 public:
 int a;
 …
 };
 class B : public A { … }
 class C : public A { … }
 class D : public B, public C { … }
 In this case, D will have two copies of grandparent variable ‘a’. Hence, if there is a

call to display the value of ‘a’ in D then which ‘a’ will it refer to. Solution to this
problem is virtual inheritance. It is to use virtual keyword when inheritance is being
carried out

 class A {

DE70/DC56 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 7

 public:
 int a;
 …
 };
 class B : public virtual A { … }
 class C : public virtual A { … }
 class D : public B, public C { … }
 This ensures that only one copy of variables of the grandparent is inherited by the

grandchild.

Q.7 a. What are abstract classes? How can a class be made abstract? Give

example.

Answer:
 Abstract classes: These are the classes that cannot be instantiated ie., we cannot

create the objects of these classes. Generally abstract classes are used as a
template on which a class hierarchy may be created. The base level classes in the
hierarchy are typically too generalized to have any implementation and that is why
they created as abstract classes.

 A class becomes an abstract class if it contains one or more pure virtual functions.
Pure virtual functions do not provide the body of the function.

 All classes that are derived from an abstract class must provide the
implementation for each of the pure virtual function declared in the base class. If
not, the derived class would itself become abstract.

 For example, following is the code for an abstract class A having a pure virtual
function fn.

 class A {
 public:
 void fn(int a) = 0; // pure virtual function
 …
 };

 b. Explain try..catch and throw constructs with the help of an example.

Answer:
 Exception handling is managed using the keywords try, catch and throw. Program

statements that are to be monitored for exceptions are contained within the try
block. If an exception occurs within the try block, it is thrown. The catch block
specifies the code that is to be executed when an exception occurs. To throw an
exception the throw keyword is used.

 The general form of exception handling block is:
 try{
 // code to be monitored
 throw exception
 }

DE70/DC56 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 8

 catch (datatype arg) { // exception handing code }
 For example, the following code shows how to throw an exception if division by

zero is attempted
 cout << "\nEnter the numerator: ";
 cin >> a;
 cout << "\nEnter the denominator: ";
 cin >> b;
 try {
 if (b == 0)
 throw 0;
 cout << "a/b = " << a/b;
 }
 catch (int i) { cout << "Exception: Division by zero not allowed"; }

 Q.8 a. What are templates and what is their use? Explain.

Answer:
 A template is a footprint on which the functions and class definitions are based on.

Templates work on generic data types and they are instantiated as per the
requirement of the function or class.

 The need to have templates is explained with the help of following example.
Consider a function that finds the minimum of two integers having the following
form:

 int minimum(int a, int b) { … }
 This may be overloaded to find the minimum of two floating point numbers. In this

case, it will look like
 float minimum(float a, float b) { … }
 This may be extended for doubles also. All these implementations will have the

same logic, except for the fact that they will operate on different data types. To help
provide only one implementation, C++ provides the concept of templates. A
template takes a generic data type and compiler generates the code based on this
template depending on the current context that is the desired input data type. A
template can be defined for the same having the syntax

 template <class T>
 T minimum(T a, T b) { … }
 When a call will be made to this function as say minimum(x, y) then if the data type

of x and y will be integer then system will invoke it as if it is defined for integers.
Similarly, if the data type of x and y will be float then system will invoke it as if it
is defined for floating point variables.

 The benefit of templates lies in the fact that it helps in creating concise code
avoiding definition of several overloaded functions.

 b. Write a program to find the minimum of two values using templates.

In main(), write calls to display its use on different data types.

DE70/DC56 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 9

Answer:
#include <iostream>

using namespace std;

template <class T>
T minimum(T a, T b) {
 if (a < b)
 return a;
 else
 return b;
}

int main() {
 int x = 10, y = 20;
 cout << "\nMin of " << x << ", " << y << " is " << minimum(x, y);
 float m = 1.23, n = 2.10;
 cout << "\nMin of " << m << ", " << n << " is " << minimum(m, n);
 return 0;
}

Q.9 a. Write a program to display the contents of file on the screen.

Answer:
 #include <iostream>

#include <conio.h>
#include <fstream>
using namespace std;
int main() {
 char filename[30], c;
 ifstream inFile(filename);

 cout << "\nEnter the name of the file: ";
 cin >> filename;
 if (!inFile) {
 cout << "\nNot able to open the file";
 getch();
 exit(1);
 }
 while (!inFile.eof()){
 inFile.get(c);
 cout << c;
 }
 inFile.close();
 return 0;
}

DE70/DC56 OBJECT ORIENTED PROGRAMMING WITH C++ JUNE 2014

© IETE 10

 b. With the help of examples, explain the use of the following flags in the
ios class:

 (i) scientific (ii) boolalpha
 (iii) right (iv) showpos

Answer:
 (i) scientific: used to display floating point numbers in exponential form.

Example:
 cout.setf(ios::scientific);
 cout << 100.0;
 code will produce the output: 1.000000e+002

 (ii) boolalpha: used to convert a bool variable to string such as true or false.

Example:
 bool b = true;
 cout.setf(ios::boolalpha);
 cout << b;
 code will produce the output: true in place of 1 for true

 (iii)right: used to display data right aligned. Effect can be seen when width is also

set. Example:
 cout.setf(ios::right);
 cout.width(10);
 cout << "abc";
 code will produce the output: abc
 Here 7 blanks appear before the text abc.

 (iv) showpos: used to show leading positive sign in numeric output. Example:
 cout.setf(ios::showpos);
 cout << 100;
 code will produce the output: +100

Text Book

Object Oriented Programming with C++, Poornachandra Sarang, PHI, 2004

