Q2 (a) Evaluate $\operatorname{Lim}_{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{1 / x^{2}}$ in the form of indeterminant.

Answer

$$
\begin{aligned}
& \text { Q.2.a. som: } \\
& \text { Let } y=\operatorname{Lif}_{x \rightarrow 0}\left(\frac{\tan x}{1 / x^{x} x}\right)^{\frac{1}{x}} \\
& \log y=\operatorname{Lif}_{x \rightarrow 0} \log \left(\frac{\tan x}{x}\right)^{1 / x} \\
& \text { - Lt } \frac{1}{x^{2}} \log \frac{\tan x}{x} \\
& =\operatorname{Lit}_{x \rightarrow 0} \frac{\log \tan x-\log x}{x^{2}-1} \\
& =\operatorname{Lit}_{x \rightarrow 0} \frac{\frac{2}{\sin 2 x}-x}{2 x} \\
& =\operatorname{Lt}_{x \rightarrow 0} \frac{2 x-\sin 2 x}{2 x^{2} \cdot \sin 2 x} \\
& =L_{x \rightarrow 0} \frac{2-2 \cos 2 x}{4 x^{2} \cos 2 x+4 x \sin 2 x} \\
& =\operatorname{Lt}_{x \rightarrow 0} \frac{4 \sin 2 x}{-8 x^{2} \cdot \sin 2 x+16 x \cdot \cos 2 x+4 \sin 2 x} \\
& =\operatorname{Lt}_{x \rightarrow 0} \frac{8 \cos 2 x}{-16 x^{2} \cos 2 x-48 x \sin 2 x+24 \cos 2 x} \\
& \therefore \text { The requires } \quad \frac{1}{3} \text { if is } e^{1 / 3} \text { Ans. }
\end{aligned}
$$

Q2 (b) Use Taylor's theorem, expand $\sqrt{1+\sin x}$ upto sixth power of x.

Answer

$$
\begin{aligned}
& \text { Q.2.b. som } \quad \begin{aligned}
f(x) & =\sqrt{1+\sin x} \\
& =\sqrt{1+\cos \left(\frac{\pi}{2}-x\right)}
\end{aligned} \\
& =\sqrt{1+2 \cos ^{2}\left(\frac{\pi}{4}-\frac{x}{2}\right)-1} \\
& =\sqrt{2} \cos \left(\frac{\pi}{4}-\frac{x}{2}\right) \\
& \text { by Taylor's Series, } \\
& f(a+h)=f(a)+h-f^{\prime}(a)+\frac{h^{2}}{2!} f^{\prime \prime}(a)+\frac{h^{3}}{3!} f^{\prime \prime \prime}(a)+\cdots 1 \\
& \sqrt{1+\sin x}=\sqrt{2} \cos \left(\frac{\pi}{4}-\frac{x}{2}\right) \\
& =\sqrt{2}\left[\cos \frac{\pi}{4}+\left(-\frac{x}{2}\right)\left(-\sin \frac{\pi}{4}\right)+\frac{1}{21}\left(-\frac{x}{2}\right)^{2} \times\left(-\cos \frac{\pi}{4}\right)\right. \\
& 0 \quad=1+\frac{x}{2}-\frac{x^{2}}{8}-\frac{x^{3}}{48} \\
& \text { Ans. }
\end{aligned}
$$

Q3 (a) Compute the are length of the curve $a y^{2}=x^{3}$ from $x=0$ to a point having $x=$ 0 to a point having $x=5 a$.

Answer

Q.3.a. som.

MUDERATIDN-I

Q3 (b) Find the length of an arch of the cycloid whose equations are $\mathbf{x}=\mathbf{a}(\theta+\sin \theta)$ and $\mathbf{y}=\mathbf{a}(1+\cos \theta)$.

Answer

3.b. $\quad x=a(\theta+\sin \theta), \frac{d x}{d \theta}=\hat{a}(1+\cos \theta)$

$$
y=a(1+\cos \theta), \frac{d y}{d \theta}=-a \sin \theta
$$

The limits for half of the curve $\theta=0$ and $\theta=\pi$
\therefore The required length of the arch

$$
=2 \int_{0}^{\pi} \sqrt{\left[\frac{d x}{d \theta}\right]^{2}+\left[\frac{d y}{d \theta}\right]^{2}} d \theta
$$

$$
=2 a \int_{0}^{\pi} \sqrt{(1+\cos \theta)+\sin ^{2} \theta} d \theta
$$

$$
=2 a \int_{0}^{\pi} \sqrt{\left(1+\cos ^{2} \theta+2 \cos \theta+\sin ^{2} \theta\right)} d \theta-1
$$

$$
=2 \sqrt{2} a \int_{0}^{\pi} \sqrt{(1+\cos \theta)} d \theta
$$

$$
=2 \sqrt{2} \sqrt{2} a \int_{0}^{\pi} \cos \frac{\theta}{2} d \theta
$$

$$
=8 a\left[\sin \frac{\theta}{2}\right]_{0}^{\pi}=8 a \quad 1 \quad \text { Ans } 8 a
$$

$$
\begin{aligned}
& \begin{aligned}
a y^{2} & =x^{3} \\
2 a y \frac{d y}{d x} & =3 x^{2} \quad \text { or } \frac{d y}{d x}=\frac{3 x^{2}}{2 a y}=\frac{3 x^{2}}{2 a\left(\frac{x^{2}}{a}\right)^{1 / 2}}
\end{aligned} \\
& \frac{d y}{d x}=\frac{3 x^{2}}{2 a^{4 / 2} x^{3 / 2}}=\frac{3 x^{1 / 2}}{3 a^{1 / 2}} \\
& \begin{aligned}
\text { Requires length } & =\int_{0}^{5 a} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} \\
& =\int_{0}^{5 a} \sqrt{1+\frac{9}{4} \cdot \frac{x}{a}} d x
\end{aligned} \\
& \begin{array}{l}
=\frac{1}{2 \sqrt{a}} \int_{0}^{5 a} \sqrt{4 a+9 x} d x \\
=\frac{2}{2 \sqrt{a}} \times \frac{2}{3 \times 9}\left[(4 a+9 x)^{3 / 2}\right]_{0}^{5 a}
\end{array} \\
& =\frac{1}{27 a^{1 / 2}}\left[(4 a+9 \times 5 a)^{3 / 2}-(4 a)^{3 / 2}\right] \\
& =\frac{1}{27 a^{1 / 2}}\left[343 a^{3 / 2}-8^{3 / 2}\right] \\
& =\frac{335 a}{27} \text { Ans. }
\end{aligned}
$$

Q4 (a) If $\left|z_{1}+z_{2}\right|=\left|z_{1}-z_{2}\right|$, prove that the difference of amplitudes of z_{1} and z_{2} is $\pi / 2$.

Answer

Q4 (b) A resistance of 20 ohms an inductance of 0.2 Henry and a capacitance of 100 microfarad are connected in series across 220 volts, 50 cycle/sec main. Calculate, (i) Impedance, (ii) Current, (iii) Voltage across, L, R and C.

Answer

$$
\begin{aligned}
& \text { 4.b. Sol there } R=20 \text { ohms, } L=0.2 \text { thenery } \\
& c=100 \times 10^{-6} \text { farms } \\
& \text { Voltage } v=200 \text { volts, } \omega=2 \pi \times 50 \text { radian } / \mathrm{sec} \\
& \therefore \quad X L=L \omega=0.2 \times 100 \pi=62.8319 \text { dbms. } 1 \\
& \text { and } \quad X C=\frac{1}{c \omega}=\frac{2}{100 \times 10^{6} \times 100 \pi}=31.83190 \text { ass. } 1 \\
& \text { (i) Let } z \text { be the impedance of the circuit } \\
& \text { then, } z=R+i(X L-X C)=20+i(62.8319-31.8319) \\
& \begin{array}{l}
z=20+31 i \\
|z|=\sqrt{(20)^{2}+(31)^{2}}=36.89 \text { ohms Ans } 2
\end{array} \\
& \therefore|z|=\sqrt{(20)^{2}+(31)^{2}}=36.89 \text {. } \\
& \begin{array}{l}
\text { (ii) Let I be the current in the circuit. Then, } \\
I=\frac{v}{121}=\frac{200}{36.89}=5.42 \text { Amp. }
\end{array} \\
& I=121 \text {. } 1 \text { KL }=5.42(62.8319) \\
& \text { (iii) Voltage across } \begin{aligned}
L=V L=I \times L & =5.42(62.8319) \\
& =340.55 \text { volts Ans }
\end{aligned} \\
& \text { valtafe across } R=V R=I R=5.42 \times 20=108,4 \text { volts } \mathrm{A} \text { I } \\
& \text { iN: voltage across } C=V R=I C=\begin{array}{ll}
& 5.42 \times 31.8319 \text { pose } 2 \\
& 172.52 \text { volts } 2
\end{array}
\end{aligned}
$$

Q5 (a) A rigid body is rotating with angular velocity 2 radian / sec about an axis $O R$, where R is $2 \mathbf{i}-\mathbf{j}+\mathbf{k}$ and O is the origin. Find the velocity of the point $3 i+2 j-k$ on the body.

Answer

Sen-

Q5 (b) A force of 15 units acts parallel to the line $i-2 j+2 k$ and passes through the points $2 \mathbf{i}-2 \mathbf{j}-\mathbf{k}$. Using vector method, find the magnitude of the moment of the force about the point $i+j-k$.

Answer
Q.S.b. Som the unit vector in the direction of

Q6 (a) Solve the differential equation $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=x+\sin x$
Answer

Q.6.a.

 Som:$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=x+\sin x
$$

The above egn. Can be written on

$$
D \equiv \frac{d}{d x}
$$

$$
\left(D^{2}+D-2\right) y=x+\sin x
$$

The auxiliary equation of the above differential eg

$$
m^{2}+m-2=0
$$

or $(m+2)(m-1)=0$, which gives, $m=-2,1$

$$
\text { cF. }=c_{1} e^{-2 x}+c_{2} e^{x}
$$

Now, P.I. $=\frac{1}{D^{2}+D-2}(x+\sin x)$

$$
\begin{aligned}
& =\frac{D^{2}+D-2}{D^{2}+D-2} x+\frac{1}{D^{2}+D-2} \sin x
\end{aligned}
$$

$$
=\frac{1}{-2\left[1+\frac{D+D^{2}}{2}\right]} x+\frac{1}{x+1+D-2} \cdot \sin x
$$

$$
=-\frac{1}{2}\left[1-\frac{D+D^{2}}{2}\right]^{-1} x+\frac{1}{D-3} \sin x \quad 1
$$

$$
\begin{aligned}
& =-\frac{1}{2}\left[1-\frac{1}{2}\left[1+\frac{D+D^{2}}{2}+\cdots\right] x+\frac{D+3}{D^{2}-q} \cdot \sin x\right. \\
& =-D^{2}
\end{aligned}
$$

$$
=-\frac{1}{2}\left[1+\frac{D}{2}+\frac{D^{2}}{2}+\cdots\right] x+\frac{D+3}{-1-9} \cdot \sin x 1
$$

$$
=-\frac{1}{2}\left[x+\frac{1}{2}\right]-\frac{1}{10}(D+3) \sin x
$$

$$
\begin{aligned}
& =-\frac{1}{2}[x+2] \\
& =-\frac{1}{4}(2 x+1)-\frac{1}{10}(\cos x+3 \sin x) \\
& \text { asmaral solution is }
\end{aligned}
$$

Hence the general solution

Q6 (b) A body weighing 10 kg is hung from a spring. A pull of 20 kg . Wt. will stretch the spring to 10 cm . The body is pulled down to 20 cm below the static equilibrium position and then released. Find the displacement of the body from its equilibrium position at time t sec., the maximum velocity and the period of oscillation.

Answer
2s(6.) (b) Ex (14.7) | P $\rightarrow 5$ MSNERATION-I
Highers Engg. Mathematics by B.S.Grewal
Marking $\rightarrow \quad k \rightarrow$ restoring force

$$
\begin{equation*}
k=200 \mathrm{~kg} / \mathrm{m} \tag{1}
\end{equation*}
$$

$0 \rightarrow$ fined ext of spring
$A \rightarrow$ lower end of spring
$B \rightarrow$ equilibrium position of spring when a body weighing w is hung from A.

$$
A B=0.05 \mathrm{~m}
$$

$C \rightarrow$ when the coeight is bulled down to
After any time (t), the weight is at P.

$$
T_{P}=10+200 x
$$

Equation of motion of the body

$$
\frac{d^{2} x}{d^{2}}=-\mu^{2} x, \quad \mu=14
$$

Period of

$$
\text { oscillation }=\frac{2 \pi}{1}=0.45 \mathrm{sec}
$$

Displacement of the body from B at time $\frac{1}{2}$ t is $x=0.2 \cos (14 t) \mathrm{m}$ Maximum velocity $=2.8 \mathrm{~m} / \mathrm{sec}$

Q7 (a) Find a Fourier series for the function $f(x)=x$ is the interval $[-\pi, \pi]$
Answer
Q.7.a.

Clealy, $f(x)=x$ is an add function.
Therefore, fourier series for $f(x)$ is purely a sine series given by

$$
\sum_{n=1}^{\infty} b_{n} \sin n n
$$

where, $b_{n}=\frac{2}{n} \int_{0}^{\pi} f(x) \sin n x d x$
Since $f(x)=x$ is continuous for all $x \in(-\pi, \pi)$ Therefore, fourier series of $f(x)$ converges to $f(x)$ for all $x \in(-\pi, \pi)$.

Hence, $\quad x=\sum_{n=1}^{\infty} b n \sin n x$ computation of $b_{n}:$ we have

$$
\begin{aligned}
& b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x \\
& \Rightarrow b_{n}=\frac{2}{x} \int_{0}^{\pi} x \sin n x d x \\
& \Rightarrow b_{n}=\frac{2}{n}\left[-x \cdot \frac{\cos n x}{n}+\frac{\sin n \pi}{n^{2}}\right]_{0}^{\pi} 1 \\
& \Rightarrow b_{n}=\frac{2}{n}\left[\left(-\pi \frac{\cos n x}{n}+\frac{\sin n \bar{n}}{n^{2}}\right)-0\right] \\
& \Rightarrow b_{n}=-\frac{2}{n} \cos n \pi=-\frac{2}{n}(-1)^{n}=\frac{2}{n}(-1)^{n+1} 1 \\
& \text { Subsinituting the value of by in (i), we obtain }
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n=1}^{n} \frac{2}{n}(-1)^{n+1} \sin n x \\
& \text { or } 2\left\{\sin x-\frac{1}{2} \sin 2 x+\frac{1}{3} \sin 3 x-\frac{1}{4} \sin 4 x+\cdots\right\}
\end{aligned}
$$ as the fourier series of $f(x)$

Q7 (b) Develop $f(x)$ is Fourier series in the interval (0,2), if

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}
\pi \mathrm{x}, 0 \leq \mathrm{x} \leq 1 \\
\pi(2-\mathrm{x}), 1 \leq \mathrm{x} \leq 2
\end{array}\right.
$$

Answer

Q.7.b. Som:

We know that the fourier series of afunction $f(x)$ defines on $[a, b]$ is given by $\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos \left(\frac{2 n \pi x}{b-a}\right)+b_{n} \sin \left(\frac{2 n \pi x}{b-a}\right)\right\}$, whence $a_{0}=\frac{2}{b-a} \int_{a}^{b} f(x) d x, \quad a_{n}=\frac{2}{b-a} \int_{a}^{b} f(x) \cos \left(\frac{2 n \pi x}{b-a}\right) d x$ and $\quad b_{n}=\frac{2}{b-a} \int_{a}^{b} f(x) \sin \left(\frac{2 n \pi x}{b-a}\right) d x$.

Here, $a=0, b=2$.
Therefore, the fourier series of function f(x) givenby
is given by $\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos n \pi x+b_{n} \sin n \pi x\right\}$
where $a_{0}=\int_{0}^{2} f(x) d x, \quad a_{n}=\int_{0}^{2} f(x) \cos n x \pi d x$ and $b_{n}=\int_{0}^{2} f(x) \sin n x \pi d x$
computation of a_{0}, we have, $a_{0}=\int_{0}^{2} f(x) d x$
$\Rightarrow a_{0}=\int_{0}^{1} \pi x d x+\int_{1}^{2} \pi(2-x) d x=\int_{0}^{1} f(x) d x+\int_{1}^{2} f(x) d x$
$\Rightarrow a_{0}=\frac{\pi}{2}+\frac{\pi}{2}=\pi$
computation of an: we have,
$a_{n}=\int_{0}^{2} f(x) \cos n x \pi d x$
$\Rightarrow a_{n}=\int_{0}^{1} f(x) \cos n \pi x d x+\int_{1}^{2} f(x) \cos n \pi x d x$
$\Rightarrow a_{n}=\int_{0}^{1} \pi x \cos n \pi x d x+\int_{1}^{2} \pi(2-x) \cos n \pi x d x$
$\Rightarrow a_{n}=\pi\left[x \frac{\sin n \pi x}{n \pi}+\frac{\cos n \pi x}{n^{2} \pi^{2}}\right]_{0}^{1}+\pi\left[(2-x) \frac{\sin n \pi x}{n \pi}-\frac{\cos n \pi x}{n^{2} \pi^{2}}\right]_{1}^{2}$
$\Rightarrow a_{n}=\pi\left[\frac{\cos n \pi}{n^{2} \pi^{2}}-\frac{1}{n^{2} \pi^{2}}\right]+\pi\left[-\frac{\cos 2 n \pi}{n^{2} x^{2}}+\frac{\cos n \pi}{n^{2} \pi^{2}}\right]$
$\Rightarrow a_{n}=2 \pi\left\{\frac{\cos n \pi-1}{n^{2} \pi^{2}}\right\}$
$\Rightarrow a_{n}=\frac{2}{n^{2} \pi^{2}}\left\{(-1)^{n}-1\right\}$
$\Rightarrow a_{n}=\left\{\begin{array}{l}\frac{-4}{n^{2} \pi}, \text { if } n \text { is od } \\ 0, \text { if } n \text { is even }\end{array}\right.$

$$
\begin{aligned}
& b_{n}= \int_{0}^{2} f(x) \sin n \pi x d x \\
& \Rightarrow b_{n}= \int_{0}^{1} f(x) \sin n \pi x d x+\int_{1}^{2} f(x) \sin n \pi x d x \\
& \Rightarrow b_{n}= \int_{0}^{1} \pi x \sin n \pi x d x+\int_{1}^{2} \pi(2-x) \sin n \pi x d x \\
& \Rightarrow b_{n}= \\
&\left.+\pi-\frac{x}{n \pi} \cos n \pi x+\frac{\sin n \pi x}{n^{2} \pi^{2}}\right]_{0}^{1} \\
&\left.+-(2-x) \frac{\cos n x \pi}{n \pi}-\frac{\sin n \pi x}{n^{2} \pi^{2}}\right]_{1}^{2} \\
& \Rightarrow b_{n}= \\
& \Rightarrow\left\{-\frac{\cos n \pi}{n \pi}\right\}+\pi\left\{\frac{\cos n \pi}{n \pi}\right\}=0
\end{aligned}
$$

substituting the values of a_{0}, an and b_{n} in (1) we obtain the series,

$$
\begin{aligned}
& \frac{\frac{\pi}{2}}{2}-\frac{4}{\pi}\left\{\frac{\cos n \pi}{1^{2}}+\frac{\cos 3 \pi x}{3^{2}}+\frac{\cos 5 \pi x}{5^{2}}+\cdots\right\} \\
& \text { As foamier series of } f(x)
\end{aligned}
$$

Q8 (a) Find the Laplace transform of cost. cos $2 t . \cos 3 t$.

Answer

Qr8.a. Som:

$$
\text { [os } t \cdot \operatorname{sos} 2 t \cdot \cos 3 t=\frac{1}{2}[(2 \cos t \cdot \cos 2 t) \cos 3 t]
$$

$$
\begin{aligned}
& =\frac{1}{2}[(2 \cos t \cdot \cos 2 t) \cos 3 t] \\
& =\frac{1}{2}[(\cos 3 t+\cos t) \cos 3 t] \\
& =\frac{1}{4}\left[2 \cos ^{2} 3 t+2 \cos 3 t \cdot \operatorname{co}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}[\cos 3 t \\
& =\frac{1}{4}\left[2 \cos ^{2} 3 t+2 \cos 3 t \cdot \cos t\right] 1
\end{aligned}
$$

$$
=\frac{1}{4}[1+\cos 6 t+\cos 4 t+\cos 2 t] 1
$$

$$
\therefore \mathcal{L}\{\cos 2 \cdot \cos 2 t \cdot \cos 3 t\}=\frac{1}{4}[L\{1\}+L\{\cos 6 t\}
$$

$$
+L\{\cos 4 t\}+L\{\cos 2 t\}]
$$

$$
=\frac{1}{4}\left\{\frac{1}{s}+\frac{s}{s^{2}+36}+\frac{s}{s^{2}+16}+\frac{s}{s^{2}+4}\right\} \text { Ans } 2
$$

Q8 (b) Find Laplace transform of $\cos ^{4} t$

Answer

Q.8.b. Som:

$$
\left.\begin{array}{rl}
\cos ^{4} t & =\left(\frac{1+\cos 2 t}{2}\right)^{2} \\
& =\frac{1}{4}\left\{1+2 \cos 2 t+\cos ^{2} 2 t\right\} 1 \\
1+\cos 4 t
\end{array}\right\}
$$

$$
\Rightarrow \cos ^{4} t=\frac{1}{4}\left\{1+2 \cos 2 t+\frac{1+\cos 4 t}{2}\right\}
$$

$$
\Rightarrow \cos ^{4} t=\frac{1}{8}\{3+4 \cos 2 t+\cos 4 t\}
$$

$$
\begin{aligned}
& \Rightarrow \cos ^{4} t=\frac{1}{8}\{3+4 \cos 2 t+\cos 4 t\} \\
& \therefore L\left\{\cos ^{4} t\right\}=\frac{1}{8}[L\{3\}+4\{\cos 2 t\}+L\{\cos 4 t\}] 2 \\
& \Rightarrow \text { Ans }
\end{aligned}
$$

$$
\Rightarrow L\left\{\cos ^{4} t\right\}=\frac{1}{8}\left\{\frac{3}{s}+\frac{4 s}{s^{2}+4}+\frac{s}{s^{2}+16}\right\} \text { Ans } 2
$$

Q9 (a) Find $^{-1}\left\{\frac{3 s-2}{s^{2}-4 s+20}\right\}$
Answer
L. $9^{\circ} a^{\circ}$ Som:

We have, $\mathcal{L}^{-1}\left\{\frac{2 s-2}{s^{2}-4 s+20}\right\}=L^{-1}\left\{\frac{3(s-2)+4}{(s-2)+4^{2}}\right\} \quad 2$

$$
\begin{aligned}
& =L^{-1\left\{\frac{3(s-2)}{(s-2)^{2}+4^{2}}+\frac{4}{(s-2)^{2}+4^{2}}\right\}} \begin{array}{l}
=3 L^{-1}\left\{\frac{(s-2)}{(s-2)+4^{2}}\right\}+4 L^{-1}\left\{\frac{1}{(s-2)^{2}+4^{2}}\right\} 1 \\
=3 e^{2 t} \cdot L^{-1}\left\{\frac{s}{s^{2}+4^{2}}\right\}+4 e^{2 t} \cdot L^{-1}\left\{\frac{1}{s^{2}+4^{2}}\right\} 1 \\
=3 e^{2 t} \cdot \cos 4 t+4 e^{2 t} \cdot\left(\frac{\sin 4 t}{4}\right) \\
=3 e^{2 t} \cdot(3 \cos 4 t+\sin 2 t) \text { Ans } 1
\end{array}, l
\end{aligned}
$$

Q9 (b) Solve the equation

$$
\frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}+2 \frac{\mathrm{dx}}{\mathrm{dt}}+5 \mathrm{x}=\mathrm{e}^{-\mathrm{t}} \sin \mathrm{t}, \mathrm{x}(0)=0, \mathrm{x}^{1}(0)=1
$$

Using Laplace transform.
Answer

Text Books

1. Engineering Mathematics- Dr. B S Srewal, $12^{\text {th }}$ Edition 2007, Khanna Publishes Delhi.
2. Engineering Mathematics - H K Dass, S. Chand \& Company Ltd. 13 ${ }^{\text {th }}$ Edition, 2007 New Delhi .
3. A text book \& Manish Goyal, $7^{\text {th }}$ edition 2007, Laxmi Publishes (P) Ltd.
