Q2 (a) Prove that $\cos A \cdot \cos \left(60^{\circ}-A\right) \cdot \cos \left(60^{\circ}+A\right)=\frac{1}{4} \cos 3 A$ and deduce that $\cos 20^{\circ} . \cos 40^{\circ} \cdot \cos 80^{\circ}=\frac{1}{8}$

Answer

We have,

$$
\begin{aligned}
2+16 & =\cos A\left[\cos \left(60^{\circ}+A\right) \cdot \cos \left(60^{\circ}-A\right)\right] \\
& =\cos A\left[\cos ^{2} A-\sin 20^{\circ}\right] \quad \because \sin 60^{\circ}=\frac{\sqrt{3}}{2} \\
& =\cos A\left[\cos ^{2} A-\frac{3}{4}\right] \quad \\
& =\frac{1}{4}\left[4 \cos ^{2} A-3 \cos A\right]=\frac{1}{4} \cos 3 A=\text { RHS. }
\end{aligned}
$$

Now putting $a=20^{\circ}$, we get
$\cos 20^{\circ} \cdot \cos \left(60^{\circ}-20^{\circ}\right) \cdot \cos \left(60^{\circ}+20^{\circ}\right)=\frac{1}{4} \cos 60^{\circ}$
ie. $\cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 80^{\circ}=\frac{1}{4} \cdot \frac{1}{2}=\frac{1}{8}$
thence the Result.

Q2 (b) If A, B, C are the angle of a triangle, then prove that $\cos A+\cos B+\cos C=$ $1+4 \sin \mathrm{~A} / 2 \cdot \sin \mathrm{~B} / 2 \cdot \sin \mathrm{C} / 2$

Answer

$$
\begin{aligned}
& \text { Given } A+B+C=180^{\circ}, \quad \therefore \frac{A+B}{2}=\frac{180}{2}-\frac{C}{2} \\
&=(\cos A+\cos B)+\cos C \\
&=2 \cos \left(\frac{A+B}{2}\right) \cdot \cos \left(\frac{A-B}{2}\right)+1-2 \sin ^{2} C / 2 \\
&=2 \cos \left(90-\frac{C}{2}\right) \cdot \cos \left(\frac{A-B}{2}\right)+1-2 \sin ^{2} C / 2 \\
&=2 \sin \frac{C}{2} \cdot \cos \left(\frac{A-B}{2}\right)+1-2 \sin ^{2} C / 2 \\
&=1+2 \sin C / 2\left[\cos \left(\frac{A-B}{2}\right)-\sin \frac{C}{2}\right] \quad\left[\because A+B+C=180^{\circ}\right. \\
&=1+2 \sin C / 2\left[\cos \left(\frac{A-B}{2}\right)-\cos \left(\frac{A+B}{2}\right)\right]\left[\begin{array}{l}
\frac{A}{2}
\end{array}\right] \\
& \sin \frac{C}{2}=\sin \left(90^{\circ}-\frac{A+B}{2}\right) \\
&=1+2 \sin C_{12} \cdot 2 \sin \frac{\left(\frac{A-B}{2}+\frac{A+B}{2}\right)}{2} \cdot \\
& \quad \sin \cdot \frac{\left(\frac{A+B}{2}-\frac{A-B}{2}\right)}{2} \\
&=1+4 \cdot \sin \frac{Q}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2} \quad\left[\because \cos C-\cos D \rightarrow 2 \sin \frac{C+1}{2} \cdot \sin \frac{D-C}{2}\right] \\
&=\text { RUS. }
\end{aligned}
$$

Q3 (a) Find the coefficient of x^{32} in the expansion of $\left(x^{4}-\frac{1}{x^{3}}\right)^{15}$. Also find coefficient of $\mathbf{x}^{\mathbf{- 1 7}}$.

Answer

$x=x^{4}, a=\frac{-1}{x^{3}}, n=15$
$n_{c_{r}} x^{n-r} a^{r}={ }_{c_{r}}\left(x^{4}\right)^{15-r}(-1)^{r}\left(\frac{1}{x^{3}}\right)^{\gamma}$
$\begin{aligned} T_{r+1} & ={ }^{n} c_{r} x^{n-r} a^{\gamma}={ }^{15} c_{r}\left(x^{4}\right)^{15-r}(-1)\left(x^{3}\right) \\ & ={ }^{15} c_{r} x^{60-4 r} \cdot(-1)^{\gamma} \cdot \frac{1}{x^{3 \gamma}}={ }^{15} c_{r} x^{60-7 \gamma} \cdot(-1)^{\gamma}\end{aligned}$
Put $60-7 r=32 \Rightarrow r=4$

$$
T_{5}={ }^{15} c_{4} x^{32} \cdot(-1)^{4}
$$

coefficient of x^{32} is $={ }^{15} c_{4}=\frac{15.14 .13 .12}{4.3 .2 .1}=1365$ Ans
Again put $60-7 r=-17 \Rightarrow \gamma=11$
coefficient of x^{-17} is $=-{ }^{15} c_{11}=\frac{-(15)(14)(13)(12)}{4.3 .2 .1}=-1365$
Q3 (b) The sum of first three terms of a G.P. is 16 and the sum of the next three term is $\mathbf{1 2 8}$. Find the sum of the $n^{\text {th }}$ term of GP.

Answer

b. Let a be the first term and r the common ratio of the G.P., thew

$$
\begin{aligned}
& a+a r+a r^{2}=16 \\
& \text { and } a r^{3}+a r^{4}+a r^{5}=128
\end{aligned}
$$

$$
a+a r+a r^{2}=16
$$

$\Rightarrow a\left(1+r+r^{2}\right)=16$ and $a r^{3}\left(1+r+r^{2}\right)=128$
$\Rightarrow \frac{a r^{3}\left(1+r+r^{3}\right)}{d\left(1+r+r^{2}\right)}=\frac{128}{16} 8$
$\Rightarrow \quad r^{3}=8 \Rightarrow 2=r \quad$ in (i), we get $a=\frac{16}{7}$
Putting the value of $r=2$,
$\therefore S_{n}=a\left(\frac{\gamma^{n}-1}{\gamma-1}\right)$
$\Rightarrow \quad S_{n}=\frac{16}{7}\left(\frac{2^{n}-1}{2-1}\right)=\frac{16}{7}\left(2^{n}-1\right)$ Ans:

Q4 (a) Show that, $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]=\left[\begin{array}{cc}1 & -\tan \theta / 2 \\ \tan \theta / 2 & 1\end{array}\right]\left[\begin{array}{cc}1 & \tan \theta / 2 \\ -\tan \theta / 2 & 1\end{array}\right]^{-1}$
Answer

$$
\left.\begin{aligned}
\text { Lef } A & =\left[\begin{array}{cc}
1 & \tan \theta / 2 \\
-\tan \theta / 2 & 1
\end{array}\right] \text {, then }|A|=\mid \tan \theta / 2 \\
|A| & 1
\end{aligned} \right\rvert\,
$$

$$
\text { Now, } C_{11}=\text { corfactor of } A_{11}=1
$$

$$
C_{11}=\text { corfactor of } A_{12}=\tan \theta / 2
$$

$$
c_{12}=\text { co-factor of of } A 21=-\tan \theta_{2}
$$

$$
c_{22}=c_{2} \text { factor of } A_{22}=1
$$

$$
=\left[\begin{array}{cc}
1 & -\tan \theta / 2 \\
\tan \theta_{2} & 1
\end{array}\right] \cdot A^{-1}
$$

$$
\left.\left.\begin{array}{l}
=\left[\tan \theta_{2}\right. \\
1
\end{array}\right] \cdot \tan \theta_{12}\right] \cdot \frac{1}{1} 1 \tan ^{2} \theta_{2}\left[\begin{array}{cc}
1 & -\tan \theta_{12} \\
=\left[\tan \theta_{12}\right. & 1
\end{array}\right]-1
$$

$$
=\frac{1}{1+\tan ^{2} \theta_{12}}\left[\begin{array}{cc}
1-\tan ^{2} \theta_{12} & -2 \tan \theta_{12} \\
2 \tan \theta_{12} & 1-\tan ^{2} \theta_{12}
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
\frac{1-\tan ^{2} \theta_{12}}{1+\tan ^{2} \theta_{12}} & \frac{-2 \tan \theta_{12}}{1+\tan ^{2} \theta_{12}} \\
\frac{2 \tan ^{2} \theta_{2}}{1+\tan ^{2} \theta_{12}} & \frac{1-\tan ^{2} \theta_{12}}{1+\tan ^{2} \theta_{12}}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Q4 (b) Find the matrix A satisfying the equation $\left[\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right] A\left[\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
\begin{aligned}
& \text { =maing of Q.4.a. } \\
& \text { RHS }=\left[\begin{array}{cc}
1 & -\tan \theta / 2 \\
\tan d_{12} & 1
\end{array}\right]\left[\begin{array}{cc}
1 & \tan \theta_{12} \\
-\tan \theta_{2} & 1
\end{array}\right]
\end{aligned}
$$

Answer

1. Som:

Let $B=\left[\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right]$ and $C=\left[\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right]$
then the given egn becomes,
we have, $|B|=I_{2}^{2}=\left|\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right|=1 \neq 0$
and $|C|=\left|\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right|=1 \neq 0$
Therefore, B and C are invertible matrix such thant, $\Rightarrow B^{-1}=\left[\begin{array}{cc}3 & -1 \\ 5 & 2\end{array}\right]$ and $C^{-1}=\left[\begin{array}{cc}2 & -3 \\ -3 & 5\end{array}\right]$ Non, $B A C=I_{2}$
$B^{-1}(B A C) C^{-1}=B_{2}^{-1} I_{2}^{1}$
$\Rightarrow\left(B^{-1} B\right) A\left(C C^{-1}\right)=B^{-1} C^{-1}=B^{-1} \cdot C^{-1}-1$
$\left.\begin{array}{ll}\Rightarrow A & I_{2}=B^{-1} C^{-1} \Rightarrow A \\ \Rightarrow & \Rightarrow \\ \Rightarrow & I_{2} \\ \Rightarrow & -1 \\ -5 & 2\end{array}\right]=\left[\begin{array}{cc}9 & -14 \\ -16 & 25\end{array}\right]$ Ans.
Q5 (a) For what values of K are the three lines $4 x+7 y-9=0,5 x+k y+15=0$ and $9 x-y+6=0$ are concurrent.

Answer

2.5.a. The given lines are, $\begin{aligned} & 4 x+7 y-9=0 \\ & \begin{array}{l}5 x+k y+15=0 \\ \\ \\ 9 x-y+6=0\end{array} \text { (II) (III) }\end{aligned}$ Solving (1) and (iii) Simultaneously, we get

$$
\frac{x}{42-9}=\frac{y}{-81-24}=\frac{1}{-4-63}
$$

This the point of intersection of (i) and (iii) is $\left(-\frac{33}{67}, \frac{105}{67}\right)$.

$$
x=-\frac{33}{67}, \quad y=\frac{105}{67}
$$ Sue, the three lines are concurrent, this point of intersection lies on (ii), ie $5 x+k y+15=0$

$$
\begin{array}{ll}
\text { U } & 5 x+k y+15=0 \\
\Rightarrow & 5\left(-\frac{33}{67}\right)+k\left(\frac{105}{67}\right)+15=0 \\
\Rightarrow & -165+105 k+1005=0
\end{array}
$$

thence, for $k=-8$, the given lines are concurrent.

Q5 (b) Find the equation of the two lines passing through the point (1, -1) and inclined at an angle of 45° with the line $2 x-5 y+7=0$

Answer
Sots: Ne know that the equations of two straight lives Which press through a point $\left(x_{1}, y_{1}\right)$ and mace a given angle α which the given straight line $y=m x+c$ are

$$
y_{1} y_{1}=\frac{m \pm \tan \alpha}{1+m \tan \alpha}\left(x-x_{1}\right)
$$

Here, $x_{1}=1, y=-1, \alpha=45$
m = Slope of the line $2 x-5 y+7=0$
so, $m=\frac{2}{5} \downarrow\left[\right.$ using $\left.m=-\frac{\text { lofficientg } x}{\text { coefficient of } y}\right] A \stackrel{Q}{2 x-54+7=0}{ }^{R}$
So, the equation of the required lines are

$$
\begin{aligned}
& y-(-1)=\frac{\frac{2}{5}+\tan 45^{\circ}}{1-\frac{2}{5} \tan 45^{\circ}}(x-1) \text { and } y-(-1)=\frac{\frac{2}{5}-\tan 45^{\circ}}{1+\frac{2}{5} \tan -45^{\circ}}(x-1) \\
\Rightarrow & y+1=\frac{\frac{2}{5}+1}{1-\frac{2}{5}(1)}(x-1) \text { and } y+1=\frac{\frac{2}{5}-1}{1+\frac{2}{5}(1)}(x-1) \\
\Rightarrow & y+1=\frac{7}{3}(x-1) \quad \text { and } y+1=\frac{-3}{7}(x-1) \\
\Rightarrow & 3 y+3=7 x-7 \quad \text { and } 7 y+7=-3 x+3 \\
\Rightarrow & 7 x-3 y-10=0 \quad \text { and } 3 x+7 y+4=0
\end{aligned}
$$

Hence, the equation of the required sines are $7 x-3 y-10=0$ and $3 x+7 y+4=0$ Ans.

Q6 (a) Find the equation of the circle which passes through the intersection of two circles, $x^{2}+y^{2}-8 x-24 y+7=0$, and $x^{2}+y^{2}-4 x+10 y+8=0$ and has it centre on the x -axis.

Answer
Som. We have two circles,

$$
\begin{align*}
& x^{2}+y^{2}-8 x-24 y+7=0 \tag{i}\\
& x^{2}+y^{2}-4 x+10 y+8=0 \tag{ii}
\end{align*}
$$

Let the equation of a circle passing through the pts of intersection of (1) and (11) be,

$$
\begin{align*}
& x^{2}+y^{2}-8 x-24 y+7+k\left(x^{2}+y^{2}-4 x+10 y+8\right)=0 \\
& (1+k) x^{2}+(1+k) y^{2}+(-8-4 k) x+(-24+10 k) y+7+8 k=0 \\
\Rightarrow & x^{2}+y^{2}+\frac{-8-4 k}{1+k} x+\frac{-24+10 k}{1+k} y+\frac{7+8 k}{1+k}=0 \tag{iii}
\end{align*}
$$

The centre of the circle (Iii) i
The centre lies on x-axis, so,

$$
\begin{aligned}
& {\left[\begin{array}{l}
\because \\
\because
\end{array}=\frac{12}{5}\right.} \\
&
\end{aligned}
$$

hunting the value of $k=\frac{12}{5}$ in eg. (iii), weave Q Ga. som.

$$
\begin{aligned}
& x^{2}+y^{2}+\frac{-8-\frac{48}{5}}{1+\frac{12}{5}} x+\frac{-24+24}{1+\frac{12}{5}} y+\frac{7+\frac{96}{5}}{1+\frac{12}{5}}=0 \\
& \Rightarrow x^{2}+y^{2}-\frac{88}{17} x+\frac{131}{17}=0
\end{aligned}
$$

Q6 (b) Find the centre, length of the axes, eccentricity, directrices, foci and the length of the latus rectum of the hyperbola $9 x^{2}-16 y^{2}=144$

Answer

Com

The given eqn of the hyperbola c an be written as,

$$
\frac{x^{2}}{16}-\frac{y^{2}}{9}=1
$$

$$
\text { Here, } a^{2}=16 \text { and } b^{2}=9
$$

$$
\Rightarrow \quad a=4 \quad \text { and } \quad b=3
$$

\therefore Transverse Axis $=2 a=2 \times 4=8$
\therefore Conjugate Axis $=2 b=2 \times 3=6$
\therefore Centre $=(0,0)$
he e know that, $\quad b^{2}=a^{2}\left(e^{2}-1\right)$ $\Rightarrow a=16\left(e^{2}-1\right) \Rightarrow e=\sqrt{\frac{25}{16}}=\frac{5}{4}$
Dirrectrices ave $x=\frac{a}{e} \Rightarrow x=\frac{4}{\left(\frac{5}{4}\right)} \Rightarrow x=\frac{16}{5}$
and $\quad x=-\frac{a}{e} \Rightarrow x=\frac{-4}{\left(\frac{5}{4}\right)} \Rightarrow x=-\frac{16}{5}$
The coordinates of foci are $(\pm a e, 0)$ ie, $\left(\pm 4 \times \frac{5}{4}, 0\right)$ ie, $(\pm 5,0)$
Length of Lotus-rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 9}{4}=\frac{9}{2} \quad$ Ans
Q8 (a) Evaluate $\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+2\right)} d x$

Answer

$$
\text { Sorn: } I=\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+2\right)} d x \text { (i) }
$$

$$
\text { On putting } x^{2}=t \text { (x+1)(x+2)} \text { that } 2 x d x=d t \text { in (i), we get, }
$$

$$
\text { Let } \frac{1}{(t+1)(t+2)}=\frac{A}{t+1}+\frac{B}{t+2}
$$

$$
\Rightarrow \quad 1 \equiv A(t+2)+B(t+1)
$$

$$
\begin{aligned}
& 1 \equiv A(-1+2) \equiv A=1 \quad(t=-1) \\
& 1 \equiv B(-2+1) \Rightarrow B=-1
\end{aligned} \quad(t=-2)
$$

$$
\frac{1}{(t+1)(t+2)}=\frac{1}{t+1}-\frac{1}{t+2}
$$

$$
\int \frac{1}{(t+1)(t+2)} d t=\int \frac{1}{t+1} d t-\int \frac{1}{t+2} d t
$$

$$
=\log (t+1)-\log (t+2)=\log \frac{t+1}{t+2}
$$

$$
=\log \frac{x^{2}+1}{x^{2}+2} \text { Ans. }
$$

Q8 (b) Evaluate $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$

Answer

\& esr:

Q9 (a) Solve the initial value problem $\left(1+\mathbf{x}^{2}\right) \frac{d y}{d x}+2 x y-4 x^{2}=0$, when $\mathbf{y}(\mathbf{0})=\mathbf{0}$.

Answer

Som The given differential equation can be written as

$$
\frac{d y}{d x}+\frac{2 x}{1+x^{2}} y=\frac{4 x^{2}}{1+x^{2}} \text { ((1) }
$$

This in a linear differential equation of the form

$$
\frac{d y}{d x}+P y=Q \text {, where } P=\frac{2 x}{1+x^{2}} \text { and } Q=\frac{4 x^{2}}{1+x^{2}}
$$

we have I.F. $=e^{\int P d x}=e^{\int \frac{2 x}{1+x^{2}} d x=e^{\log \left(1+x^{2}\right)}=1+x^{2}}$
Tavetiplying both sides of (i) by I.F $=\left(1+x^{2}\right)$, we set

$$
\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=4 x^{2}
$$

$$
\begin{aligned}
& \text { integrating wrac. } x \text {, we get } \\
& y\left(1+x^{2}\right)=\int 4 x^{2}-b x+c \quad \text { [using (I.F.) }=\int Q(I . F .) \operatorname{cin}+C \text {] }
\end{aligned}
$$

Oof $y\left(1+x^{2}\right)=\frac{4}{3} x^{2}+c$

$$
\text { Hence, } y\left(1+x^{2}\right)=\frac{4 x^{3}}{3} \text { is the require- } 0 \text { solution. Axe }
$$

$$
\begin{aligned}
& I=\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x \\
& \text { then } \\
& I=\int_{0}^{\pi} \frac{(\pi-x) \sin (\pi-x)}{1+\cos ^{2} x} d x \\
& I=\int_{0}^{\pi} \frac{(\pi-x) \sin x}{1+\cos ^{2} x} d x \\
& I=\int_{0}^{\pi} \frac{a \sin x}{1+\cos ^{2} x} d x-\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x \\
& I=\pi \int_{0}^{\pi} \frac{\sin x d x}{1+\cos ^{2} x}-I \\
& \Rightarrow 2 I=\pi \int_{0}^{\pi} \frac{\sin x d x}{1+\cos ^{2} x} \\
& \text { Int } \cos x=t, \quad-\sin x d x=d t \\
& \begin{array}{lc}
\text { when } x=\pi, & z=-1 \\
\text { when } x=0, & t=1 \\
2 I=-\int_{+1}^{-1} \frac{\pi d t}{1+t^{2}}=\pi \int_{-1}^{+1} \frac{d t}{1+t^{2}}=\pi\left[\tan ^{1} t\right]_{-1}^{+1}
\end{array} \\
& =\pi\left[\tan ^{-1} 1-\tan ^{-1}(-1)\right] \\
& =\pi\left[\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)\right]=\frac{\pi^{2}}{2} \\
& I=\frac{\pi^{2}}{4} \\
& \text { aus. }
\end{aligned}
$$

Q9 (b) Solve $\mathbf{x}(\mathbf{y}-\mathbf{x}) \frac{d y}{d x}=y(y+x)$

Answer

som.

We have, $\frac{d y}{d x}=\frac{y(y+x)}{x(y-x)}$
The given differential equation in a homogeneous differential equation, Subrestituting $y=v x$

$$
\frac{d y}{d x}=v+x \frac{d v}{d x} \text {, we get }
$$

or $v+x \frac{d v}{d x}=\frac{v(v+1)}{v-1}$
or $x \frac{d v}{d x}=\frac{v^{2}+v-v^{2}+v}{v-1}=\frac{2 v}{v-1}$
By separating variable, we get $\frac{v-1}{v} d v=2 \frac{d x}{x}$ on Integrating the variable, we get $\frac{v-1}{v} d v=2 \frac{d x}{x}$ on integrating $\int\left(1-\frac{1}{v}\right) d v=2 \int \frac{1}{x} d x$

$$
\begin{aligned}
& \text { or } \quad v-\log v=2 \log x+c \\
& \text { or } \frac{y}{x}-\log \left(\frac{y}{x}\right)=\log x^{2}+c
\end{aligned}
$$

$$
\text { or } y-\log x y=c \text {. }
$$

Text Books

1. Engineering Mathematics, H K Bass, S Chand \& Company Ltd., New Delhi 2010.
2. A textbook of comprehensive mathematics class XI, Parmanand Gupta, Laxmi Publication (P) Ltd., New Delhi.
