
DC69 C# & .NET JUNE 2014

© IETE 1

Q.2 a. What is C#? Discuss its features in brief.

Answer:

1. C# is a simple, modern, object oriented language derived from C++ and Java.

2. It aims to combine the high productivity of Visual Basic and the raw power of
C++.

3. It is a part of Microsoft Visual Studio7.0.

4. Visual studio supports Vb, VC++,C++,Vbscript, Jscript. All of these languages
provide access to the Microsft .NET platform.

5. .NET includes a Common Execution engine and a rich class library.

6. Microsofts JVM eqiv is Common language run time (CLR).

7. CLR accommadates more than one languages such as C#, VB.NET, Jscript,
ASP.NET,C ++.

8. Source code --->Intermediate Language code(IL) ---> (JIT Compiler) Native
code.

9. The classes and data types are common to all of the .NET languages.

10. We may develop Console application, Windows application, Web application
using C#.

11. In C# microsoft has taken care of C++ problems such as Memory management,
pointers etc.

12. It support garbage collection, automatic memory management and a lot.

Q.2b. Draw the .NET framework architecture & explain in detail.

Answer:

DC69 C# & .NET JUNE 2014

© IETE 2

.Net is not an Operating System. It is a IDE. It provides some functionality for the
programmers to build their solution in the most constructive and intelligent way ever.
Just to tell you the truth, most of the codes in .Net environment resembles with the
JAVA coding as if some people coming from Java would find it as to their native
language.

.NET is a Framework that loads into your operating system, which you need not to load
in the later versions of windows like Windows 2003 server or Just a new release of
Windows Vista. As it is going to be added as a component in the next generation of
windows.

Now, What is the .Net all about? Well, Its a framework that supports Common
Language Runtime (CLR). As the name suggests, Common Language Runtime will be
something that will run a native code for all the programming languages provided within
the Architecture.

Q.3a. Write a program that employs nested if...else statements to determine
that largest of three given numbers.

Answer: Page Number 101 of Text Book

Q.3b. What are increment and decrement operators in C#? Illustrate

increment operator with a program.

Answer: Page Number 68-69 from Text Book

Q.4a. What are methods? Write down the basic characteristics of methods?

Answer:
A method is a code block containing a series of statements. Methods must be declared
within a class or a structure. It is a good programming practice that methods do only one
specific task. Methods bring modularity to programs. Proper use of methods bring the
following advantages:

• Reducing duplication of code
• Decomposing complex problems into simpler pieces
• Improving clarity of the code
• Reuse of code
• Information hiding

Basic characteristics of methods are:

DC69 C# & .NET JUNE 2014

© IETE 3

• Access level
• Return value type
• Method name
• Method parameters
• Parentheses
• Block of statements

Access level of methods is controlled with access modifiers. They set the visibility of
methods. They determine who can call the method. Methods may return a value to the
caller. In case our method returns a value, we provide its data type. If not, we use the void
keyword to indicate, that our method does not return values. Method parameters are
surrounded by parentheses, and separated by commas. Empty parentheses indicate that
the method requires no parameters. The method block is surrounded with { } characters.
The block contains one or more statements that are executed, when the method is
invoked. It is legal to have an empty method block.

A method signature is a unique identification of a method for the C# compiler. The
signature consists of a method name, and the type and kind (value, reference, or output)
of each of its formal parameters. Method signature does not include the return type.

Q.4b. How to use Hash Table, Array List in c#? Explain with example.

Answer:
 ArrayList:-Arraylist is a collection of objects(may be of different types).
Arraylist is very much similar to array but it can take values of different datatypes.
If you want to find something in a arraylist you have to go through each value in arraylist,
theres no faster way out.ArrayList's size can be changed dynamically.

Items are added to the ArrayList with the Add() method.
example:-HOW TO ADD DATA IN ARRAYLIST:

 using System.Collections;

class Program
{
 static void Main()
 {
 //
 // Create an ArrayList and add three elements.
 //
 ArrayList list = new ArrayList();
 list.Add("One");
 list.Add("Two");
 list.Add("Three");
 }

DC69 C# & .NET JUNE 2014

© IETE 4

}
EXAMPLE-Adding one ArrayList to second one

There are different ways to add one ArrayList to another, but the best way is using
AddRange. Internally, AddRange uses the Array.Copy or CopyTo methods, which
have better performance than some loops.

=== Program that uses Add and AddRange ===

using System;
using System.Collections;

class Program
{
 static void Main()
 {
 //
 // Create an ArrayList with two values.
 //
 ArrayList list = new ArrayList();
 list.Add(15);
 list.Add(17);
 //
 // Second ArrayList.
 //
 ArrayList list2 = new ArrayList();
 list2.Add(110);
 list2.Add(113);
 //
 // Add second ArrayList to first.
 //
 list.AddRange(list2);
 //
 // Display the values.
 //
 foreach (int i in list)
 {
 Console.WriteLine(i);
 }
 }
}

=== Output of the program ===

15
17

DC69 C# & .NET JUNE 2014

© IETE 5

110
113
The ArrayList class provides the Count property, which is a virtual property. When
you use Count, no counting is actually done; instead, a cached field value is returned

HASH TABLE:-Hashtable is also collection which takes a key corresponding to
each values.
If you want to find something in a hashtable you dont have to go through each value
in hashtable, instead search for key values and is faster.The Hashtable lets you
quickly get an object out of the collection by using it's key.
The Hashtable object contains items in key/value pairs. The keys are used as
indexes. We can search value by using their corresponding key.
The data type of Hashtable is object and the default size of a Hashtable is 16.

Items are added to the Hashtable with the ADD()method.
Example-How to add data in hash table:--
Add method of Hashtable is used to add items to the hashtable. The method has
index and value parameters. The following code adds three items to hashtable.

hshTable .Add("A1", "Kamal");
hshTable .Add("A2", "Aditya");
hshTable .Add("A3", "Ashish");

Retrieving an Item Value from Hashtable

The following code returns the value of "Author1" key:

string name = hshTable["A1"].ToString();

Removing Items from a Hashtable

The Remove method removes an item from a Hashtable. The following code
removes item with index "A1" from the hashtable:

hshTable.Remove("A1");

Looking through all Items of a Hashtable

The following code loops through all items of a hashtable and reads the values.

// Loop through all items of a Hashtable
IDictionaryEnumerator en = hshTable.GetEnumerator();
while (en.MoveNext())
{

DC69 C# & .NET JUNE 2014

© IETE 6

 string str = en.Value.ToString();
}

Q.5a. Write a program to reverse a string in C#.Net.

Answer:
 using System;
 namespace Learn
 {

 class Program
 {

 static void Main(string[] args)
 {

 string Str, Revstr = "";
 int Length;

 Console.Write("Enter A String : ");
 Str = Console.ReadLine();
 Length = Str.Length - 1;

 while (Length >= 0)
 {

 Revstr = Revstr + Str[Length];

 Length--;

 }

 Console.WriteLine("Reverse String Is {0}", Revstr);

 Console.ReadLine();

 }
 }

Q.5b. What is enumeration expression in C#? Illustrate through example.

Answer:
 The elements of enumeration expressions evaluate the same as their underlying

types. In addition to using normal operators, there are additional methods that can
be performed with an enum type. An Enum class is used to obtain the majority of
functionality shown in this section. Where the Enum class is being used, the
capitalized Enum class name prefixes the method call.

The examples in this section refer to the following enum:

DC69 C# & .NET JUNE 2014

© IETE 7

enum Weekday { Mon = 1, Tue, Wed, Thu, Fri, Sat = 10, Sun };

As a typed value, the enum must be assigned to a variable of its type. For example, the
underlying representation of a Weekday enum may default to an integral value, but it's
still a Weekday type. The following line shows the declaration and initialization of an
enum variable:

Weekday w = Weekday.Mon;

During a Console.WriteLine() method call, enum values are printed with their names
rather than their underlying integral values. Here's an example:

Console.WriteLine("WeekDay: {0}", w); // WeekDay: Mon

The Format() method returns the string representation of an enum value, as shown here:

Console.WriteLine("Format: {0}", w.Format()); // Format: Mon

To go in the opposite direction and convert a string to an enum, use the FromString()
method. The arguments it accepts are the enum type, the string representation of the value
to be converted, and a Boolean condition to verify case. The following example uses the
typeof() operator to get the enum type. The string to be converted is Tue, and the method
is case-sensitive.

Console.WriteLine("FromString: {0}",
 Enum.FromString(typeof(EnumTest.Weekday),
 "Tue", true)); // FromString: Tue

To get the name of an enum variable, use the GetName() method. The following example
shows the GetName() method accepting the enum type and an instance of that enum type
and returning its name as a string.

w = EnumTest.Weekday.Wed;
Console.WriteLine("GetName: {0}",
 Enum.GetName(typeof(EnumTest.Weekday), w)); // GetName: Wed

If there is a need to get the string representations of all the members of an enum, use the
GetNames() method—plural of the previous method. The following example shows an
array being filled with the names. The method call only needs the enum type.

string[] weekDays = new string[7];
weekDays = Enum.GetNames(typeof(EnumTest.Weekday));

Console.WriteLine("Day 1: {0}", weekDays[0]); // Day 1: Mon
Console.WriteLine("Day 2: {0}", weekDays[1]); // Day 2: Tue
Console.WriteLine("Day 3: {0}", weekDays[2]); // Day 3: Wed

DC69 C# & .NET JUNE 2014

© IETE 8

Console.WriteLine("Day 4: {0}", weekDays[3]); // Day 4: Thu
Console.WriteLine("Day 5: {0}", weekDays[4]); // Day 5: Fri
Console.WriteLine("Day 6: {0}", weekDays[5]); // Day 6: Sat
Console.WriteLine("Day 7: {0}", weekDays[6]); // Day 7: Sun

A corresponding method to get the values of an enum is the GetValues() method. The
following example shows the GetValues() method accepting an enum type and returning
an array of objects. Notice that the array is of type objects. In C#, all types are also object
types. Therefore, any type can be assigned to the object type.

object[] weekDayVals = new object[7];
weekDayVals = Enum.GetValues(typeof(EnumTest.Weekday));

Console.WriteLine("Day 1: {0}", weekDayVals[0]); // Day 1: Mon
Console.WriteLine("Day 2: {0}", weekDayVals[1]); // Day 2: Tue
Console.WriteLine("Day 3: {0}", weekDayVals[2]); // Day 3: Wed
Console.WriteLine("Day 4: {0}", weekDayVals[3]); // Day 4: Thu
Console.WriteLine("Day 5: {0}", weekDayVals[4]); // Day 5: Fri
Console.WriteLine("Day 6: {0}", weekDayVals[5]); // Day 6: Sat
Console.WriteLine("Day 7: {0}", weekDayVals[6]); // Day 7: Sun

To find out the underlying type of an enum, use the GetUnderlyingType() method. It
accepts an enum type argument, and the return value is the integral type of the enum's
underlying type. Here's an example:

Console.WriteLine("Underlying Type: {0}",
 Enum.GetUnderlyingType(
 typeof(EnumTest.Weekday))); // Underlying Type: Int32

When it's necessary to determine if an enum value is defined, use the IsDefined() method.
It accepts an enum type and an enum value and returns a Boolean true if the value is
defined in the enum. Otherwise, it returns false. Here's an example:

w = EnumTest.Weekday.Thu;
Console.WriteLine("Thu is Defined: {0}",
 Enum.IsDefined(typeof(EnumTest.Weekday), w));
 // Thu is Defined: True

To obtain an enum type that is set to a specific value, use the ToObject() method. The
following example shows the method accepting an enum type and an integer, and
returning an enum of the requested type with the value corresponding to the integer.

Console.WriteLine("Get Friday: {0}",
 Enum.ToObject(typeof(EnumTest.Weekday), 5));
 // Get Friday: Fri

DC69 C# & .NET JUNE 2014

© IETE 9

Q.6a. Explain the three basic principles of OOPs.

Answer: Page Number 247 of the Text book

Q.6b. What is the difference between class & subclass?

Answer: Page Number 286 of the Text book

Q.6c. Write a program to illustrate a simple inheritance.

Answer: Page No 286 of the Text book

Q.8a. What is the need of operator overloading? Give examples of overloading

unary operators, overloading binary operators, overloading comparison
operators.

Answer:

Operator overloading is a concept of polymorphism where you can redefine operators
like +, – , * etc with additional functionalities.

For instance we can redefine the + functionalities to add objects like obj1 + obj2. Below
is simple code snippet which redefines + operator.

class SomeClass

{

private int someValue;

public SomeClass(int val)

{

someValue = val;

}

public static SomeClass operator +(SomeClass arg1, SomeClass arg2)

DC69 C# & .NET JUNE 2014

© IETE 10

{

return new SomeClass(arg1.someValue + arg2.someValue);

}

}

You can now use the + operator to add objects of type someclass as shown in the below
code snippet.

Obj = obj1 = obj2

Q.9b. What is thread? What does it do? What is the use of threading in C#?

Answer: Page Number 439 of text book

Text Book

Programming in C# -A primer, E Balagurusamy, II Edition, TMH, 2008

