
DC62 DATABASE MANAGEMENT SYSTEMS JUNE 2014

© IETE 1

Q.2 a. List main responsibilities of Database Administrator?

Answer:

Database Administrator (DBA):

The main reason for using DBMS is to have central control of both the data and the

programs that access those data. A person who has such central control over the

system is called a database administrator. DBA coordinates all the activities of the

database system; the database administrator has a good understanding of the

enterprise’s information resources and needs.

Responsibilities of Database administrator:

1. Schema definition: DBA creates the original database schema by executing a

set of data definition statements in the Data definition language(DDL).

2. Storage structure and access method definition

3. Schema and physical organization modification: DBA carries out changes to

the schema and physical organization to reflect the changing needs of the

organization or to alter the physical organization to improve performance.

4. Granting user authority to access the database: By granting different types of

authorization, the DBA can regulate which part of the database various user

can access.

5. Specifying integrity constraints

6. Acting as liaison with users

7. Monitoring performance and responding to changes in requirements.

8. Understanding and employing the optimal flexible architecture to ease

administration, allow flexibility in managing I/O, and to increase the

capability to scale the system.

 b. What are the advantages of DBMS? Explain the difference between

physical and logical data independence.

Answer:

Data independence is the capacity to change the schema at one level of a database system

without having to change the schema at the next level. The three-schema architecture

allows the feature of data independence. Data independence occurs because when the

DC62 DATABASE MANAGEMENT SYSTEMS JUNE 2014

© IETE 2

schema is changed at some level, the schema at the next level remains unchanged; only

the mapping between the two levels is changed.

Types of data independence:

Physical Data Independence – It is capacity to change the internal schema without

having to change conceptual schema. Hence, the external schemas need not be changed

as well. Changes to the internal schema may be needed because some physical files had

to be reorganized to improve the performance of retrieval or update. If the same data as

before remains in the database, the conceptual schema needs not be changed.

Logical Data Independence - It is the capacity to change the conceptual schema without
having to change external schemas or application programs. The conceptual schema may
be changed to expand the database (by adding a record type or data item), to change
constraints, or to reduce the database (by removing a record type or data item). Only the
view definition and the mappings need be changed in a DBMS that supports logical data
independence. Changes to constraints can be applied to the conceptual schema without
affecting the external schemas or application programs.

Q.3 a. Define and explain “Mapping Cardinalities”. List various types of

Mapping Cardinalities.

Answer:

1. Express the number of entities to which another entity can be associated via a

relationship set.

2. Most useful in describing binary relationship sets.

For a binary relationship set the mapping cardinality must be one of the following

types:

1. One to one

2. One to many

3. Many to one

4. Many to many

One to one: An entity in A is associated with at most one entity in B and an entity in B is

associated with at most one entity in A.

On-to-many: An entity in A is associated with any number (zero or more) of entities in B

.An entity in B ,however, can be associated with at most one entity in A.

DC62 DATABASE MANAGEMENT SYSTEMS JUNE 2014

© IETE 3

Many-to-one: An entity in A is associated with at most one entity in B and an entity in B,

however, can be associated with any number (zero or more) of entities in A.

Many-to-many: An entity in A is associated with any number (zero or more) of entities in

B and an entity in B, however, can be associated with any number (zero or more) of

entities in A.

(Some elements in A and B may not be mapped to any elements in the other set)

(Some elements in A and B may not be mapped to any elements in the other set)

 b. Define and explain the data constraints. What are various types of

data constraints?

DC62 DATABASE MANAGEMENT SYSTEMS JUNE 2014

© IETE 4

Answer:

Q.4 a. Differentiate between Relational Algebra and Relational Calculus.

DC62 DATABASE MANAGEMENT SYSTEMS JUNE 2014

© IETE 5

Answer:

Relational Algebra (RA) and Relational Calculus (RC) are formal languages for the

database relational model while SQL is the practical language in the database relational

model. In these formal languages a conceptual database model is expressed in

mathematical terms and notations while in the practical language – SQL, the

mathematical expressions of the functionality and transaction of the database operations

are implemented physically. Formal languages provide a medium through which to

optimize and implement queries in database transactions.

Of course the first notable differences between these languages in the syntax and notation

used in the expressions. Each language, that RA, RC, and SQL have their own notations

to express their notations.

Relation algebra is a procedural language where relation calculus is non-procedural

language Relational algebra, an offshoot of first-order logic (and of algebra of sets), deals

with a set of finitary relations which is closed under certain operators. These operators

operate on one or more relations to yield a relation. Relational algebra is a part of

computer science.

Relational calculus consists of two calculi, the tuple relational calculus and the domain

relational calculus, that are part of the relational model for databases and provide a

declarative way to specify database queries. This in contrast to the relational algebra

which is also part of the relational model but provides a more procedural way for

specifying queries.

Relational Algebra describes step-by-step procedure for computing the desired answer

depend on the order in which operator are applies in query.

Relational Calculus describes the set of answer without being explicit about how they

should be computed.

 b. Explain basic operators of relational algebra.

DC62 DATABASE MANAGEMENT SYSTEMS JUNE 2014

© IETE 6

Answer:

Five basic operators of relational algebra are:

1. Union () - Selects tuples that are in either P or Q or in both of them. The duplicate

tuples are eliminated.

R = P Q

2. Minus (–) - Removes common tuples from the first relation.

R = P – Q

3. Cartesian Product or Cross Product () - The cartesian product of two relations is

the concatenation of tuples belonging to the two relations and consisting of all possible

combination of the tuples.

R = P Q

For Example:

P: Q:

ID

Name

101 Jones

103 Smith

104 Lalonde

R = P Q R = P – Q

R = P Q

ID

Name

100

John

104 Lalonde

ID

Name

100

John

101 Jones

103 Smith

104 Lalonde

ID

Name

101 Jones

103 Smith

DC62 DATABASE MANAGEMENT SYSTEMS JUNE 2014

© IETE 7

P.ID P.Name Q.ID Q.Name
101 Jones

100

John

101 Jones

104 Lalonde

103 Smith

100

John

103 Smith

104 Lalonde

104 Lalonde

100

John

104 Lalonde

104 Lalonde

4. Projection () - The projection of a relation is defined as a projection of all its tuples

over some set of attributes, i.e., it yields a vertical subset of the relation. It is used to

either reduce the number of attributes (degree) in the resultant relation or to reorder

attributes. The projection of a relation T on the attribute A is denoted by A(T).

Projection of relation EMPLOYEE over attribute Name

EMPLOYEE:
ID

Name

101 Jones

103 Smith

104 Lalonde

106 Byron

5. Selection () - Selects only some of the tuples, those satisfy given criteria, from the

relation. It yields a horizontal subset of a given relation, i.e., the action is defined over a

complete set of attribute names but only a subset of the tuples are included in the result.

R = B(P)

For Example:

Name
Jones

Smith

Lalonde

Byron

DC62 DATABASE MANAGEMENT SYSTEMS JUNE 2014

© IETE 8

Result of Selection over EMPLOYEE for ID > 103

EMPLOYEE: RESULT
ID

Name

101 Jones

103 Smith

104 Lalonde

106 Byron

Q.5 a. Discuss the following SQL commands with example:-
 (i) Create Table (ii) Describe
 (iii) Delete (iv) Select

Answer:
i) Create Table: This command is used to create a table or a relation in a database.
Syntax:

An SQL relation is defined using the create table command:
 create table r (A1 D1, A2 D2, ..., An Dn,
 (integrity-constraint1),
 ...,
 (integrity-constraintk))
where

r is the name of the relation
each Ai is an attribute name in the schema of relation r
Di is the data type of values in the domain of attribute Ai

Example:
create table supplier(sno char(2),

 sname varchar2(10),
status number(3),
city varchar2(10),
primary key(sno));

Describe: This command displays the column names, the data types and the special
attributes connected to the table.

Syntax: describe <tablename>

Example: describe supplier;
Output:
Name type Null?
sno NOT NULL char(3)

ID

Name

104 Lalonde

106 Byron

DC62 DATABASE MANAGEMENT SYSTEMS JUNE 2014

© IETE 9

sname varchar2(10)
status number(3)
city varchar2(10)

The describe command displays the name of the columns,their data type and size along
with the NOT NULL constraint.

i) Delete: The delete command in SQL is used to remove rows /records from the

table like:

Removal of all rows:
Delete tablename;
e.g. delete s;
removal of specified rows:
delete from tablename where <search condition>
e.g. delete from s where sno=’s1’ will delete the row /record of supplier s1 from s table.

ii) Select: This command in SQL is used to view the data in the tables.

Syntax:

select A1, A2, ..., An
 from r1, r2, ..., rm
 where P

Ai represents an attribute
Ri represents a relation
P is a predicate.

e.g. select sno,sname,city from s; will show the records of all suppliers existing in the s
table
and select sno,sname from s where city=’delhi’ will show the records of all the suppliers
who belong to delhi.

b. Consider the following Supplier-Part-Shipment(S-P-SP) database (keys
are underlined)
 S (sno,sname,status,city)
 P(pno,pname,colour,weight)
 SP(sno,pno,qty)

 Write the SQL queries for the following statements:-

(i) Get the supplier names of the suppliers who are supplying red
colour part.

 (ii) Get the total quantity supplied by all suppliers.

DC62 DATABASE MANAGEMENT SYSTEMS JUNE 2014

© IETE 10

Answer:
select sname
from s
 where sno in(select sno
 from sp
 where pno in (select pno
 from p
 where color =’red’)));
ii) select sum(qty)
 from sp
 group by (sno);

Q.6 a. Describe the guidelines for relation schemas.

Answer: Normalization is the process of designing a data model to efficiently store data

in a database. The end result is that superfluous data is eliminating, and only data related

to the quality is stored within the table.

For example, if we store City, State and ZipCode data for Customers in the same table as

Other Customer data. With this approach, we keep repeating the City, State and ZipCode

data for all Customers in the same area. Instead of storing the same data again and again,

we could normalize the data and create a related table called City. The "City" table could

then store City, State and ZipCode along with IDs that relate back to the Customer table,

and we can eliminate those three columns from the Customer table and add the new ID

column.

In the design of a relational database management system (RDBMS), the process of

organize data to minimize being without a job is called normalization. The goal of

database normalization is to decay relations with anomaly in order to produce smaller,

logical relations. Normalization usually involves dividing large, badly-formed tables into

smaller, well-formed tables and important relationships between them. The objective is to

cut off data so that additions, deletions, and modification of a field can be made in just

one table and then propagated through the rest of the database via the defined

relationships.

http://www.globalshiksha.com/notification/

DC62 DATABASE MANAGEMENT SYSTEMS JUNE 2014

© IETE 11

Goals of Normalization

1. Let R be a relation scheme with a set F of functional dependencies.

2. Decide whether a relation scheme R is in “good” form.

3. In the case that a relation scheme R is not in “good” form, decompose it into a

set of relation scheme {R1, R2, ..., Rn} such that

• each relation scheme is in good form

• the decomposition is a lossless-join decomposition

• Preferably, the decomposition should be dependency preserving.

Comparison of Normal forms:

Sno Normal forms

Test Remedy(Normalisation)

1. First (1NF) Relation should have no
multivalued
attributes or nested relations.

Form new relations for each
multivalued attribute or nested
relation.

2. Second (2 NF) For relations where primary
key contains multiple
attributes,no nonkey attribute
should be functionally
dependent on a part of the
primary key.

Decompose and set up a new
relation for each partial key
with its dependent
attribute(s).Make sure to keep
a relation with
the original primary key and
any attributes that are fully
functionally dependent on it.

3. Third (3 NF) Relation should not have a
nonkey
attribute functionally
determined by another nonkey
attribute (or by a set of nonkey
attributes). That is, there should
be no transitive dependency of
a nonkey attribute on the
primary key.

Decompose and set up a
relation that includes the
nonkey attribute(s) that
functionally determine(s)
other nonkey attribute(s).

 b. Differentiate 2nd and 3rd normal forms with example.

DC62 DATABASE MANAGEMENT SYSTEMS JUNE 2014

© IETE 12

Answer:

Closure of a Set of Functional Dependencies

1. Given a set F of functional dependencies, there are certain other functional

dependencies that are logically implied by F.

2. For example: If A → B and B → C, then we can infer that A → C

3. The set of all functional dependencies logically implied by F is the closure of

F.

4. We denote the closure of F by F+.

5. F+ is a superset of F.

Computation of F+ :

1. Given a set F set of functional dependencies, there are certain other functional

dependencies that are logically implied by F.

a. For example: If A → B and B → C, then we can infer that A → C

2. The set of all functional dependencies logically implied by F is the closure of F.

3. We denote the closure of F by F+.

4. We can find all of F+ by applying Armstrong’s Axioms:

a. if β ⊆ α, then α → β (reflexivity)

b. if α → β, then γ α → γ β (augmentation)

c. if α → β, and β → γ, then α → γ (transitivity)

These rules are
d. sound (generate only functional dependencies that actually hold) and

e. complete (generate all functional dependencies that hold).

Example
• R = (A, B, C, G, H, I

F = { A → B
 A → C
 CG → H
 CG → I
 B → H}

• some members of F+

o
A → H

DC62 DATABASE MANAGEMENT SYSTEMS JUNE 2014

© IETE 13

 by transitivity from A → B and B → H

o AG → I

 by augmenting A → C with G, to get AG → CG
 and then transitivity with CG → I

o CG → HI

 by augmenting CG → I to infer CG → CGI,

• and augmenting of CG → H to infer CGI → HI,
 and then transitivity

Q.7 a. Define and explain Multivalve Dependencies.

Answer:
Multivalued Dependencies (MVDs)

Let R be a relation schema and let α ⊆ R and β ⊆ R. The multivalued dependency
 α →→ β
 holds on R if in any legal relation r(R), for all pairs for tuples t1 and t2 in r such
that t1[α] = t2 [α], there exist tuples t3 and t4 in r such that:
 t1[α] = t2 [α] = t3 [α] = t4 [α]
 t3[β] = t1 [β]
 t3[R – β] = t2[R – β]
 t4 [β] = t2[β]
 t4[R – β] = t1[R – β]
Example:

Let R be a relation schema with a set of attributes that are partitioned into 3 nonempty
subsets.

Y, Z, W
then Y →→ Z (Y multidetermines Z)
if and only if for all possible relations r (R)

< y1, z1, w1 > ∈ r and < y1, z2, w2 > ∈ r
then

< y1, z1, w2 > ∈ r and < y1, z2, w1 > ∈ r
since the behavior of Z and W are identical it follows that

Y →→ Z if Y →→ W

From the definition of multivalued dependency, we can derive the following rule:
If α → β, then α →→ β

That is, every functional dependency is also a multivalued dependency

DC62 DATABASE MANAGEMENT SYSTEMS JUNE 2014

© IETE 14

Use of Multivalued Dependencies:
1. To test relations to determine whether they are legal under a given set

of functpecify constraints on the set of legal relations. We shall thus

concern ourselves only with relations that satisfy a given set of

functional and multivalued dependencies.

 If a relation r fails to satisfy a given multivalued dependency, we can

 construct a relations r′ that does satisfy the multivalued dependency by

 adding tuples to r.

 b. Find the canonical cover for the following relation with the given

functional dependencies:
R = (A, B, C)
F = {A → BC
 B → C
 A → B
 AB → C}

Answer: R = (A, B, C)
F = {A → BC
 B → C
 A → B
 AB → C}
Combine A → BC and A → B into A → BC

Set is now {A → BC, B → C, AB → C}
A is extraneous in AB → C

Check if the result of deleting A from AB → C is implied by the other
dependencies

Yes: in fact, B → C is already present!
Set is now {A → BC, B → C}

C is extraneous in A → BC
Check if A → C is logically implied by A → B and the other dependencies

Yes: using transitivity on A → B and B → C.
Can use attribute closure of A in more complex cases

The canonical cover is: A → B
 B → C

 Q.8 a. Describe the static hash file with buckets and chaining and show how

insertion, deletion and modification of a record can be performed.

DC62 DATABASE MANAGEMENT SYSTEMS JUNE 2014

© IETE 15

Answer:
In static hash file organization, the term bucket is used to denote a unit storage that can
store one or more records. A file consists of buckets 0 through N-1, with one primary
page per bucket initially and additional overflow pages chained with bucket, if required
later. Buckets contain data entries (or data records). In hashing scheme, a hash function,
h, is performed on the key of the record to identify the bucket to which data record
belongs to. The hash function is an important component of the hashing approach. The
main problem with static hash file is that the number of buckets is fixed.

 h(key) mod N
h

 Primary Bucket Pages Overflow Pages

Insertion of a record – To insert a data entry, the hash function is used to identify the

correct bucket and then put the data entry there. If there is no space for this data entry, a

new overflow page will be allocated, put the data entry on this page, and the page to the

overflow chain of the bucket.

Deletion of a record – To delete a data entry, the hash function is used to identify the

correct bucket, locate the data entry by searching the bucket, and then remove it. If the

data entry is the last in an overflow page, the overflow page is removed from the

overflow chain of the bucket and added to a list of free pages.

Modification of a record – To modify a data entry, the hash function is used to identify

the correct bucket, locate the data entry by searching the bucket and get it, modify the

data entry, and then rewrite the modified data entry on it.

 b. Explain the types of multi-level ordered indexes.

Answer:
 Multi-Level Indexes:

 Because a single-level index is an ordered file, we can create a primary index to

the index itself ; in this case, the original index file is called the first-level index
and the index to the index is called the second-level index.

0
1

N-1

 h

DC62 DATABASE MANAGEMENT SYSTEMS JUNE 2014

© IETE 16

 We can repeat the process, creating a third, fourth, ..., top level until all entries of
the top level fit in one disk block.

 A multi-level index can be created for any type of first-level index (primary,
secondary, clustering) as long as the first-level index consists of more than one
disk block

 Dynamic Multi-Level Indexes
 To retain the benefits of using multilevel indexing while reducing index insertion

and deletion problems

 Leaves some space in each of its blocks for inserting new entries and uses
appropriate insertion/deletion algorithms for creating and deleting new index
blocks when the data file grows and shrinks.

 Often implemented by using data structures called B-trees and B+-trees

(A two-level primary index ISAM (Indexed Sequential Access Method)
organization)

 Q.9 a. Explain sort-merge algorithm for external sorting.

DC62 DATABASE MANAGEMENT SYSTEMS JUNE 2014

© IETE 17

Answer:

External sorting refers to sorting algorithms that are suitable for large files of records

stored on disk that do not fit entirely in main memory, such as most database files. The

typical external sorting algorithm uses a sort-merge strategy, which starts by sorting

small subfiles—called runs—of the main file and then merges the sorted runs, creating

larger sorted subfiles that are merged in turn. The sort-merge algorithm, like other

database algorithms, requires buffer space in main memory, where the actual sorting and

merging of the runs is performed. The basic algorithm, given below, consists of two

phases: the sorting phase and the merging phase. The buffer space in main memory is

part of the DBMS cache—an area in the computer’s main memory that is controlled by

the DBMS. The buffer space is divided into individual buffers, where each buffer is the

same size in bytes as the size of one disk block. Thus, one buffer can hold the contents of

exactly one disk block. In the sorting phase, runs (portions or pieces) of the file that can

fit in the available buffer space are read into main memory, sorted using an internal

sorting algorithm, and written back to disk as temporary sorted subfiles (or runs). The

size of each run and the number of initial runs (nR) are dictated by the number of file

blocks (b) and the available buffer space (nB). For example, if the number of available

main memory buffers nB = 5 disk blocks and the size of the file b = 1024 disk blocks,

then nR= (b/nB) or 205 initial runs each of size 5 blocks (except the last run which will

have only 4 blocks). Hence, after the sorting phase, 205 sorted runs (or 205 sorted

subfiles of the original file) are stored as temporary subfiles on disk.In the merging phase,

the sorted runs are merged during one or more merge passes. Each merge pass can have

one or more merge steps. The degree of merging (dM) is the number of sorted subfiles

that can be merged in each merge step.During each merge step, one buffer block is

needed to hold one disk block from each of the sorted subfiles being merged, and one

additional buffer is needed for containing one disk block of the merge result, which will

produce a larger sorted file that is the result of merging several smaller sorted

subfiles.Hence, dM is the smaller of (nB −1) and nR, and the number of merge passes is

(logdM(nR))  In our example where nB = 5, dM = 4 (four-way merging), so the 205

initial sorted runs would be merged 4 at a time in each step into 52 larger sorted subfiles

at the end of the first merge pass. These 52 sorted files are then merged 4 at a time into

DC62 DATABASE MANAGEMENT SYSTEMS JUNE 2014

© IETE 18

13 sorted files, which are then merged into 4 sorted files, and then finally into 1 fully

sorted file, which means that four passes are needed.

Sort-merge algorithm for external sorting

Internal sorting

set i = 1;

j = b; {size of the file in blocks}

k = nB; {size of buffer in blocks}

m =  (j/k);

{Sorting Phase}

while (i ≤m)

do {

read next k blocks of the file into the buffer or if there are less than k blocks

remaining, then read in the remaining blocks;

sort the records in the buffer and write as a temporary subfile;

i = i + 1;

}

{Merging Phase: merge subfiles until only 1 remains}

set i = 1;

p = logk–1m {p is the number of passes for the merging phase}

j = m;

while (i ≤p)

do {

n = 1;

q =  j/(k–1) ; {number of subfiles to write in this pass}

while (n ≤q)

do

 {

read next k–1 subfiles or remaining subfiles (from previous pass) one block at a time;

merge and write as new subfile one block at a time;

n = n + 1;

DC62 DATABASE MANAGEMENT SYSTEMS JUNE 2014

© IETE 19

}

j = q;

i = i + 1;

}

 b. Explain various cost components that are the constituents of a Query

Execution.

Answer:
Cost Components for Query Execution:
The cost of executing a query includes the following components:

1. Access cost to secondary storage. This is the cost of transferring (reading and

writing) data blocks between secondary disk storage and main memory buffers. This is

also known as disk I/O (input/output) cost. The cost of searching for records in a disk file

depends on the type of access structures on that file, such as ordering, hashing, and

primary or secondary indexes. In addition, factors such as whether the file blocks are

allocated contiguously on the same disk cylinder or scattered on the disk affect the access

cost.

2. Disk storage cost. This is the cost of storing on disk any intermediate files that are

generated by an execution strategy for the query.

3. Computation cost. This is the cost of performing in-memory operations on the records

within the data buffers during query execution. Such operations include searching for and

sorting records, merging records for a join or a sort operation, and performing

computations on field values. This is also known as CPU (central processing unit) cost.

4. Memory usage cost. This is the cost pertaining to the number of main memory buffers

needed during query execution.

5. Communication cost. This is the cost of shipping the query and its results from the

database site to the site or terminal where the query originated. In distributed databases it

would also include the cost of transferring tables and results among various computers

during query evaluation.

Text book

Fundamentals of Database Systems, Elmasri, Navathe, Somayajulu, Gupta, Pearson

Education, 2006

