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Q2 (a) The signals x4 (t) =10cos(100xt) and X, (t) =10cos(50xnt) are both sampled at
fg =75Hz. Show that the two sequences of samples so obtained are
identical.

Answer

Ans. If the signal is sampled at f; = 75 Hz, the discrete-time signal is

21(t)|e=n1, = 21 (nT,) = z1(n) = 10 cos(100mnT,) = 10 cos (%n) = 10cos (%n)

2
= 10cos (27171’ - 23—7rn) = 10cos (%n)

2
Z3(t)|t=nT, = T2(nT) = x2(n) = 10 cos(507nT}) = 10 cos (5?—;11) ==Y cRd (%n) = z1(n)

Similarly, we have

Q2 (b) Define quantization and quantization error? Derive signal to quantization
noise ration for sinusoidal signals.
Answer

Ans. Quantization is a process of converting a continuous amplitude sample into a discrete amplitude sample. In
other words, the process of converting a discrete-time continuous-amplitude signal by expressing each sample value
as a finite (instead of an infinite) number of digits, is called quantization. The error introduced in representing the
continuous-valued signal by a finite set of discrete value levels is called quantization error.

Let a4(n) denote the sequence of quantized samples at the output of the quantizer. The quantization error is a
sequence e,(n) defined as the difference between the quantized value and the actual sample value. Thus

Bq(ﬂ) = mq(n) - z(n)
The quantization error e,(n) in rounding is limited to the range of —A/2 to A/2, that s,

A A
9 <eyln) < )

where A is the step size. Consider a continuous time sinusoidal signal
z4(t) = Acos(Qyt)

The quantization error is given by
eq(t) = 2a(t) — 24(t)

Let 7 denotes the time that ,(f) stays within the quantization levels. The mzan square error power Py is
1 T 2 1 T
2
R=y [ dlit=1 / e2(t)dt
-7 0

Since e (t) = f—rt, -7 <t <7, we have
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If the quantizer has b bits of accuracy and the quantizer covers the entire range 2A, the quantization step is A = 24/2%
Hence

A?/3
Fy= 526
The average power of the signal is given by
2
e
2

The signal to quantization noise ration is given by

ﬁP-T_§2b
SQNR= 5 =32

q

Q3 (a) A discrete-time causal LTI system has the system function

_(@+02z7Ha-927?)
1+0.81z72

H(z)

() Is the system stable?
(i) Find expressions for a minimum-phase system H i, (z) and an

all pass system Hgp, (z) such that H(z) = Hpin (2)Hap (2)

Answer

Ans. (i) Consider the given system function

(140211 -9272)
HE) = —1 585
For poles
14+081z"2=0
22 = =0.81 = 570,81
z =109

The poles z = £50.9 are inside the unit circle, so the system is stable.
(ii) Consider the given system function

(140.2271)(1-9272)
(1+0.81z-2)
(=R 0:22+1)

T )

H(z) =

Allpass systems have poles and zeros that occur in conjugate reciprocal pairs. If we include (9 - z“2) in both parts of
the equation above the first part will be minimum-phase and the second will become allpass.

H(z) = ( Sae (9—z‘2)) ((1 —92:_2))

(1+0.812=2) 9-22)
= SR e e
Hap(z)

H

min(z)

H(Z) = Hmin(z)Hap(z)
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Q3 (b) A nonminimum-phase causal signal x(n) has z-transform

(1—22‘1j(1+ ;z‘lj(1+22_1j
X(2) = :
@a- 2‘1)2(1—42_1)

For what values of the constant B will the signal y(n)=p"x(n) be
minimum-phase?

Answer

For what values of the constant  will the signal y(n) = f"z(n) be minimum-phase?
Ans. Given that
y(n) = §"z(n)

(L= 3671) (1+36271) (14 382)
(1= B (1= 162)

In order for ¥{z) to be minimum-phase, all of the poles and zeros must be inside the unit circle. Poles are at f, f, %6
and 26105 ave at 35, -3, -3, Because the zero of X(z) which is the farthest from the unit circl s ot 2 = -3.4(n)
will be minimum-phase if ] < 2,

Q4 (a) Explain function declaration, function definition and function cell using a
suitable example. What is function prototype? Find the 10-point inverse
DFT of X(k)=1+258(k).

Answer
Ans. Given that X (k) = 14 26(k), 0 < k <9. Here N = 10. We know that the inverse DFT of a constant is a u\ni‘t
impulse function.

i) =51, 0<k<9
10

Similarly, the DFT of a constant is an impulse function.
DFT 1
1 s 104(k)
1 DFT
B

Therefore it follows that
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Q4 (b) Consider the length-12 sequence, defined for 0 <n <11,
x(n)={3,-1,2,4,-3-2,01-4,6,2,5} with a 12-point DFT given by X(k),

0 <k <11. Evaluate the following functions of X(k) without computing

the DFT:
11
(i) X(0) (i) X(6) (iii) Z K) (iv) Z e MEX(K) (v) Y x(k)
k=0 k=0
Answer
Ans. Given that N = 12.
(a)
N-1 11
X0 =Y zlhy=> sn)=T14
n=0 n=0

X (g) = !f(_n%(n)

n=0
11
X0 => (-1)"z(n)=3+1+2-4-3+24+0-1-4-6+2-5=—13

i)

(d) Given that

11 ‘ 11 11
D eI () = Y etk () = Y ety

k=0 k=0 k=0
4

Using the definition of IDFT (N = 12), we obtain

12 ZX el e

ZX(k]ej%"k =122(n),  atn=-4, weget
k=0

ZX (k)e~78% = 120((~4) 5) = 12012 - 4) = 122(8) = 12 x 4 = 48
k=0

(e) Using Parsevals relation, we have

11 11
Z|X(k)[2=122jx(n)|2=12[9+1+4+16+9+4+0+1+16+3ﬁ+4+25|:1500

n=0
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Q5 (a) What is FFT? Develop DIT-FFT algorithm for N =8 and draw signal flow
graph.

Answer

Ans. FFT is an algorithm to compute the DFT with reduced computation. The N-point DFT of sequence z(n) is
given by

=z

-1
X(k)=) zn)WE, 0<k<N-1
0

n

Breaking z(n) into its even and odd numbered values, we obtain

N-1 N=F
Xk)= ) W+ Y amwh
n=0,neven n=0,nodd

Substituting n = 2r for n even and n = 2r + 1 for n odd, we have

4-1 H-1

X(k)= ) a@n)WE*+ Y z(2r + Wtk
r=0 r=0
¥-1 41
= * (2 )W + W z; a(2r + R

X(k)=G(k)+WEH(k), 0<k<N-1

where G(k) and H (k) are the %-point DFTs of the even and odd numbered sequences respectively. G(k) and H (k) are
periodic with period &. Therefore,

X (k) = G(k) + Wk H(k) 0<k<

N
X(k+5)=G(k+§)+W§+”/2H(k+§) 0<k<

since G (k+ ) = G(k), H (k+ ¥) = H(k), and WEH""2 = _ypk e obtain

X(k) = G(k) + WEH (k) 0<k<

%’-) = G(k) - WEH (k) 0<k<

The above process may be continued by expressing each of the two %-point DFTs, G(k) and H(k) as a combination of
two %i-point DFTs. Each of the -';’—-point DFTs is computed by breaking each of the sum in two %’--point DFTs, which
is then combined to give the X_point DFTs.

By splitting the DFT into its even and odd parts we have reduced the operation count from N2 (for a DFT of length
N) to 2(N/2)? (for two DFTs of length N/2). The cost of the splitting s that we need an additional O(N) operations
to multiply by the twiddle factor W and recombine the two sums.

We can repeat the splitting procedure recursively log, N times until the full DFT is reduced to DFTs of single terms.
The DFT of a single value is just the identity operation, which costs nothing. However since O(N) operations were
needed at each stage to recombine the even and odd parts the total number of operations to obtain the full DFT is
O(N lOEo N }
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Q5 (b) Let x(n) be a real-valued N-point sequence (N = Zm). Develop a method to

compute an N-point DFT X’(k), which contains only the odd harmonics

[i.e., X'(k)=0if k is even] by using only a real %-point DFT.

Answer

b. Let z(n) be a real-valued N-point sequence (N = 2™), Develop a method to compute an N-point
DFT X'(k), which contains only the odd harmonics [i.e., X'(k) = 0 if k is even| by using only a real

%—r-point DFT.
Ans. By definition

=

<
X(ky=) ()W, 0<ngN-1
0

n

—

vz

N-1
z(n)WEr + Z o(n)WEr
n=§

§-1 .
ﬂ:(n)Wf&" % Z T (n+ %) W:,(MT)

n=0

g

wiz

-1

I

3
Il
]

Let

X'(k)=X(2k+1), 0<k<—-1

ro| =

3-1

X(2k+1) = :c(n)W}ka)"
=0

(v 2wt

=

vz

-1

X 2

0

wl=z

—

W

=
Il
- o

N
+Y 2 (n+ E) Wi Wk N2

oz

=
1]
=

Al

iz

I

N
[x(n) -z (n + E)] WI’\‘,W,’G:,‘Q

n=0

let g(n) = [¢(n) -z (n+ & )] W, then

vl

me)

X@k+1)= Y gmwhn,

n=0

First form the sequence g(n), and then take its %-point DFT to get odd harmonics of X (k).
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Q6 (a) Discuss the factors that influence the choice of structure for realization of a
LTI system.

Answer

Ans. The blok digram repreentatio of ¢ system or fber s temed a8  eaation of the ystem or, equivee
iy s frefue for eliing the system. A given ranfr i ), can be ealzed b several structures and

they are all equivalent in the sense that they realize the same transfer function under infinite precision of the coefficients.

The major factors that influence the choice of a specific structure are computational complexity, memory requirements,
and finite-word-length effects.

1. The meaning of co\mputatz'onal complezity is the requirement of arithmetic operations (multiplications, and addi-
tions) to compute the output y(n).

2. The meaning of memory requirements is the number of memory locations required to store the past inputs, past
outputs, system coefficients, and any intermediate computed values.

3. The real hardware has a finite number of bits representing the past inputs, past outputs, system coefficients,and
any intermediate computed values. The effect of quantization (rounding or truncation) in the multiplications and
additions of signal values depends on the type of representation of binary numbers, whether they are in fixed form
or floating form, or whether they are in sign magnitude or 2's-complement form. The effects of all these finite values
for the number of bits used in hardware implementation is commonly called finite-word-length effects.

) H
fﬂj—‘““*p N ‘ ™.
”\j‘{ 4‘ ——}@‘L...,.M_T_p__}(; 7_)6.__ ; b3
- SR EK. Th’"
£ -7 ' ¥ o
(* fede o [ f T
STt rim
(zj&‘ ‘ “ilp 4 PRt
i Gl o :
u..ﬂ{}-l'“'"‘l}"""

Fig. 1. Fig. 1(a) and (b)

Q6 (b) Obtain two canonical realizations of the system function:

1+2z1-772

H(z) =
@ 1+z%-27
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Answer
b. Obtain two canonical realizations of the system function,

14271 - 52

ol

Ans. A realization is said to be canonic if the number of delay elements is equal to the order of the filter. Consider the
given system function

14271 =22
A=

#o) = [3] Ejﬂ - B2 H(e)

X(2)| | V(2)
sy
poles zeros
where
AT 1
e X(z) 1+4z71-772
v(n) = —v(n—1)+v(n - 2) + z(n)
and
¥y o i a4
Hy(z) = ) =14+2" -2

direct form II realization is show in Fig. 1(a).
w we realize H(z).n cascade form. Again, consider the given system function

L

14227122
Hizy=aea =m0 7
) 14271 —g=2

ENE R e
Cl4zl-oz24 fam2 -1y
e R e
BT T I P
(L) - (VB
= 3
(1+ %2'1)2 - (3é—gz‘1)
(L+27 4 V2 (14271 - v327Y)
(1 +314 5252'1) (1 +ia-1- ﬁgz‘l)
14 2.414271)(1 - 0414271
p(s = (L 2414700 -0
(1+1.618z-1)(1 - 0.6182-1)
Gl= 1424142717 [1 - 0.414271
~|14+1.618271] |1-0.6182-1
H(z) = Hy(2)Ha(2)

2 Hy(2) and Hy(z) are first-order sections. The cascade form realization of H (2) is shown in Fig. 1(b). This cascade
employs two delay elements, which is equal to the order of the flter.
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Q7 (a) Using a rectangular window, design a lowpass filter with a passband gain of
unity, cutoff frequency of 109pgg Hz and working at a sampling frequency of 5 KHz.

Take the length of the impulse response as 7.

Answer

Aus. Given that gain=1, cutoff fequency £, = 100 Ha, sampling frequency F, = 5000 Hz, and length M =7,

ihg digiﬁal cutoff frequency is given by w, = @ = 2’;—’5}}%& = 04r. The frequency response of an ideal lowpass fler
given by

Lo/ |0 we<ful<n

Hi(e¥) = o (i) 3 {1 o] <

Its impulse response hy(n) i found using the inverse DTET to give

W

j B . g Wel _ =duen
hd(‘n) - l/ HLP(ij)ijdw = __1_/ ejwndw = l E‘_’f % i gJ_ciJc_l
., ., 7\ jn " )

=W

sinwn W, [sinw.n ] =
hiln) = — =—L( "):{ﬂ n={

mooT\ wn e gl

04 n=
haln) = {mﬁi_n >0

haln) = {~0.0624, 0.0035, 0.3027, (T).4, 0.3027, 0.0035, ~0.0624}
The rectangular window is given by

1 I =3<n g3
0 otherwise

The impulse response of the length-7 FIR flter is given by

h(n) = ha(n)u(n) = {~00624, 00935, 0.3007, ?.4, 0.3027, 0.095, ~0.0624)

Q7 (b) Explain the mapping of s-plane to z-plane using bilinear transformation
with respect to IR filter design.
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Answer

Ans. Bilinear transformation is a one-to-one mapping from the s-domain to the z-domain. That is, the bilinear
transformation is a conformal mapping that transforms the JQ-axis into the unit circle in the z-plane only once, thus
avoiding aliasing of frequency components. Also, the transformation of a stable analog filter results in a stable digital
filter as all the poles in the left half of the s-plane are mapped onto points inside the unit circle of the z-domain. The
bilinear transformation is obtained by using the trapezoidal formula for numerical integration. Let the system function
of the analog filter be

X _ b
B = 20 =it
sY(s) + a¥(s) = bX(s)

Taking the inverse Laplace transform

% +ay(t) = ba(t)

Integrating the above equation between the limits (nT' — T) and nT
T nT nT
=
/ W)y f y(t)dt = b f o(t)dt
nT-T dt nT=-T n
The trapezoidal rule for numeric integration is given by
nT 1
/ a(t)dt = =[a(nT) - a(nT - T))

al-T 2

Using the above two equations, we get

(o) = oo = 7))+ SEylaT) ~ o = 1) = Lio(a) - afuT - 7)

[vm) =400 = D] + G- lytr) ~n~ 1] = 2 fafn) = (- 1)

Taking z-transform, the system function of the digital filter is given by

Comparing H(s) and H(z), we get

S 1=\ . 8 {21
S i VT s e e
The general characteristic of the mapping can be obtained by substituting s = ¢ + jQ and expressing the complex
variable 2 in the polar form as z = ¢ in the above equation, we get

éi=a_+_]n:i2_(rej“’—l)___2( je=1 4] 2rsinw )

T \rei« +1 T\1+r2+2rcosw ' *1+12 + 2rcosw

Therefore,

e 2 =1
T T\14+72+ 2 cosw
2 2rsinw
et (e )

TLm2 L Vsmanai.
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From above equations it can be noted that if r < 1, then ¢ < y, ana 1 ¥ > 1, then ¢ > U. thus, the left half of the
s-plane maps inside the unit circle ir the z-plane and the transformation results in a stable digital filter. For r = 1, we

get y
-t
Q_2 sinw —2tan£ .
=T\ leosw) T &

or equivalently,

N\

w = 2tan~} Q—T

From above equation it is evident that the mapping is nonlinear and the lower frequencies in analog domain are expanded
in the digital domain, whereas the higher frequencies are compressed. This is due to the nonlinearity of the arc tangent
function and usuallv called as freauency warnine.

Q8(a) Consider a sequence x(n)={,2,34} its DFT is given by
(k)= {10,-2 + j2,-2,~2 - j2}. The sampling rate is 10 Hz.

() Determine the sampling period, time index and sampling
time instant for a discrete time sample x(3) in time domain.

(i)  Determine the frequency resolution, frequency bin number and
frequency for each of the DFT coefficients X(1) and X(3) in
frequency domain.

Answer
Ans. (i) In time domain, we have the sampling period calculated as
-l
L= -f—s s 0.1 second

For data (3), the time index is n = 3 and the sampling time instant is determined by
t =nT, =3 x 0.1 = 0.3 seconds

(i) In frequency domain, since the total number of DFT coefficients if four (i.e., N = 4), the frequency resolution is
determined by

i 10
Af="—=—=9,
if S 2.5 Hz
The frequency bin number for X(1) is k = 1 and its corresponding frequency is determined by
ki =151
= e— = - 2
i N y 5 Hz
Similarly, for X(3) and k = 3,
kf,  3x10
f— Y = 1 =T.5Hz

Note that k = 3 is equivalent to k—N = 3-4 = -1, and f = 7.5 Hz is also equivalent to the frequency f = =0 = 25
Hz, which corresponds to the negative side spectrum.
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Q8 (b) Write technical note on time-dependent Fourier transform.

Answer

Ans. The DFT can be emuployed for the spectral analysis of a fuite-length signal composed of sinusoidal compo-
Nents as long as the frequency, amplitude and phase of each sinusoidal component are time-invariant and independent
of signal length. There are practical situations (o, radar, sonar, speech and data communication signals) where the
sigual 80 be analyze i fnstead nonstationay, for which these signal parameters are time-varying, An example of such
a times-varying signal s the chirp signal given by

2(n) = cos{ugn?)

Note that the instantaneous frequency of a{n) is given by 2u,n, which is not a constant but increases linearly with
time. A description of such & signal in the frequency-domain using a simple DET of the complete signal will provide
misleading resuls. To get avound the time varying nature o the signal parameters, an alternative approach would be
to segment the sequence into a se of subsequences of short ength. 1F the subsequence length is reasonably small it can

be assumed to be stationary for practical purposes. As a result, the frequency-domain description of a long sequence is
- given by a set of short<length DFTS, i.e. a sort-time Fourier transform.

The short-time Fourler transform (STFT), also known as the time-dependent Fourier transform, of a sequence z{n)
is defined by
5.
XSTFT(ejw, n)= Z m(n + m)w(m)e'f“’“
m==00
where w(n) is & window sequence. The function of the window is to extract finite-length portion of the sequence a(n)
such that the spectral characteristics of the section extracted are approximately stationary over the duration of the
window.

The STFT s a function of two variables: time n which is discrete and the frequency variable w, which is continuous,
The STFT Xgrpp(e/, n) s a periodic function of w with a period 2r,

In most applications, the magnitude of the STFT is of inteest, The display of the magnitude of the STFT is usually
referred to as the spectrogram. However, since the STFT is a function of two variables, the display of its magnitude
would normally require three dimensions. Often, it is plotted in two dimensions, with the magnitude represented by the
darkness of the plot. Here, the white arcas the zero-valued magnitudes while the gray areas represent n0nzero magni-
tudes, with the largest magnitudes being shown in black. In the STRT magnitude display, the vertical axis represents
the frequency variable («) and the horizontal axis represents the time index (n).

Q9 (a) Write technical note on digital Hilbert transformer and its applications.
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Answer

Ans. The frequency response of an ideal Hilbert transformer is given by
H(e™) = -jsgu(w), |w|<n
H(e™) = sgn(w)]e 78 = |H(e)|/HE), o] <7

or, equivalently

o : -j O<w<r eIt O<w<r
H(e™) = —jsgn(w) = { =1 1 -
3 —=m<w<l ¢z —a<w<i

Thus, the magnitude response and phase response of a digital Hilbert transformer are given by %
|H(e™)| = sgn(w)] =1 -r<w<n

= U<w=ix

LH(ew) = I =
(©) = ~Jom) { i

Note that H(e?) is purely imaginary and odd, therefore h(n) will be purely real and odd. Applying the DTFT
synthesis equation, we have

1[5 B R i ;
=oy WY jwn B = jwn
h(n) . H(e¥)e ™ dw = /_w 7 sgn(w)e’ ™ dw
At n = (), we obtain

T 0 T .
10 =5z [ ssmtto= gz [ jaos o "= Li04m - -0y =0

=1

Next at n # 0, we obtain

I g : Jo gt o S
h = — -1 el = — ; plwn 1= A ajwn
(n) 21?/_” J sgn(w)e?“" dw 2‘“_‘/;#_')‘6 dw+21r/[; J 8" dw
- 0 < = ‘ S 0 b
=% [ emao- L [Tenap= |2
P [ 2r Jo 2r | gn
= 0

1 ; ; JnT 4 o=inm
e = L g (S8
2nm

ejun
- ]n

= o 2

h(n) = Q%IQ — 2cos(nr)| = %[1 — cos(nr)]

h{n) = %sin2 (n_;r)

Combining the above results for n = () and n # 0, we have the overall result

\ : 0 n=0
\ hin) =
\ ) {;ﬁ;sinz(z‘zﬂ) n#0
0 n=0, neven
h(n) = '
) {n_,‘," nodd {

which is indeed real-valued and odd, as anticipated.
In practical applications, we seldom require filters that shift the phase for the full frequency range up to |w| = 7. If
we require phase shifting only up to a cut-off frequency of w,, then

H(ejw) = "j sgn(w), le Sw

Digital Hilbert transformers find application in modulators and demodulators (single-side band), speech processing,
medical imaging, etc. It provides the mathematical basis for the representation of bandpass signals.
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Q9 (b) Consider a sequence x(n)with DTFT X(ej‘”). The sequence x(n)is real

valued and causal and X (ej‘”) =2 —2acos(m). Determine X (ej‘”) .

Answer
Xp(e") =2~ Jacos{u) = 2 - a6 - ¢
Taking the IDTFT of the above equation and using the fact that z,(n) ~— Re{X(e")}, we get
z,(n) = 20(n) = ab(n + 1) = ad(n - 1)
Since 2(n) is causal, we can recover it from z,(n)
2(n) = 2ze(nju(n) - 2,(0)d(n) = 2(n) - 20d(n - 1)
This implies that

i %[az(n) —afen)] =al{n +1)-alfn -1

and since ,(n) ¢ jX7(¢) we find

iXi{e) = a6 - g7

J _ gmie

1

Xi{e¥) = - = Jusin{w)

Text Book

Discrete Time Signal Processing (1999), Oppenheim A.V., and Schafer, R.W., with J
11, R. Buck, Il Edition, Pearson Education, Low Price Edition.
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